Diagnóstico Socioambiental de la Cuenca del Río Tijuana

Elaborado por:
El Colegio de la Frontera Norte, A.C.

Coordinador:
Juan Manuel Rodríguez Esteves

Colaboradores:
Tito Alejandro Alegría Olazábal
Gabriela Muñoz Meléndez
Lina Ojeda Revah
Oscar Alberto Pombo López
Ricardo Valentín Santes Álvarez

Marzo de 2018
TABLA DE CONTENIDO

PARTE 1. MARCO DE REFERENCIA DE LA CUENCA DEL RÍO TIJUANA

<table>
<thead>
<tr>
<th>Sección</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 El contexto físico, histórico y administrativo</td>
<td>9</td>
</tr>
<tr>
<td>Ubicación y delimitación</td>
<td>9</td>
</tr>
<tr>
<td>Antecedentes históricos</td>
<td>11</td>
</tr>
<tr>
<td>División administrativa</td>
<td>14</td>
</tr>
<tr>
<td>Aspectos físicos</td>
<td>15</td>
</tr>
<tr>
<td>1.2 La composición y distribución de la población</td>
<td>27</td>
</tr>
<tr>
<td>Población total</td>
<td>27</td>
</tr>
<tr>
<td>Densidad de población</td>
<td>31</td>
</tr>
<tr>
<td>Población indígena</td>
<td>32</td>
</tr>
<tr>
<td>Crecimiento poblacional</td>
<td>32</td>
</tr>
<tr>
<td>1.3 El marco social de la problemática ambiental</td>
<td>34</td>
</tr>
<tr>
<td>Organizaciones de la Sociedad Civil</td>
<td>34</td>
</tr>
<tr>
<td>Proyectos sociales en el manejo del agua</td>
<td>40</td>
</tr>
<tr>
<td>La cultura Kumiai</td>
<td>44</td>
</tr>
<tr>
<td>Instituciones educativas</td>
<td>44</td>
</tr>
<tr>
<td>Gobierno y política</td>
<td>54</td>
</tr>
<tr>
<td>Infraestructura para las artes y cultura</td>
<td>55</td>
</tr>
<tr>
<td>1.4 El contexto normativo-ambiental de la Cuenca del Río Tijuana</td>
<td>65</td>
</tr>
<tr>
<td>Marco binacional</td>
<td>65</td>
</tr>
<tr>
<td>Otros acuerdos y programas binacionales</td>
<td>73</td>
</tr>
<tr>
<td>Legislación federal</td>
<td>75</td>
</tr>
<tr>
<td>Legislación estatal</td>
<td>78</td>
</tr>
<tr>
<td>Nivel municipal</td>
<td>80</td>
</tr>
<tr>
<td>Bibliografía</td>
<td>81</td>
</tr>
</tbody>
</table>

PARTE 2. DIAGNÓSTICO DEL RECURSO AGUA EN LA CUENCA DEL RÍO TIJUANA

<table>
<thead>
<tr>
<th>Sección</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 El RÉGIMEN de lluvias y temperaturas</td>
<td>84</td>
</tr>
<tr>
<td>Impactos por eventos hidrometeorológicos</td>
<td>90</td>
</tr>
<tr>
<td>2.2 Los recursos hídricos</td>
<td>94</td>
</tr>
<tr>
<td>Población y vivienda</td>
<td>94</td>
</tr>
<tr>
<td>Fuentes de abastecimiento</td>
<td>96</td>
</tr>
<tr>
<td>Calidad de agua</td>
<td>100</td>
</tr>
<tr>
<td>Río Colorado</td>
<td>105</td>
</tr>
<tr>
<td>Usarios por tipo de actividad</td>
<td>107</td>
</tr>
<tr>
<td>Infraestructura</td>
<td>107</td>
</tr>
<tr>
<td>Cambio climático en los recursos hídricos</td>
<td>108</td>
</tr>
<tr>
<td>Abastecimiento de agua potable y drenaje sanitario</td>
<td>109</td>
</tr>
<tr>
<td>Cobertura de agua potable y drenaje sanitario</td>
<td>111</td>
</tr>
<tr>
<td>Áreas carentes de conexión a la red de agua potable</td>
<td>113</td>
</tr>
<tr>
<td>Recomendaciones</td>
<td>114</td>
</tr>
<tr>
<td>Acciones de Política Pública</td>
<td>116</td>
</tr>
<tr>
<td>Sustentabilidad en Baja California</td>
<td>118</td>
</tr>
</tbody>
</table>
2.3 Recursos hídricos y salud pública

2.4 Desarrollo urbano

2.5 Usos de suelo y cambio de uso de suelo en la Cuenca del Río Tijuana

2.6 Desarrollo de sectores productivos

2.7 Impactos a la atmósfera

2.8 Impactos de la agricultura sobre la región y sus recursos naturales

2.9 Impacto de la industria sobre la región y sus recursos

2.10 Impacto por la explotación forestal y actividades agroforestales

2.11 Cambio climático en la Cuenca del Río Tijuana

2.12 Recomendaciones:

2.13 Restricciones económicas

2.14 Insostenibilidad de los organismos operadores de agua potable y saneamiento
2.15 Marco institucional para la gobernación del agua

Contexto jurídico-administrativo
Estrategias e instrumentos de planeación y gestión
Ordenamiento Territorial
Participación de instancias no gubernamentales
Unidad de administración integral: la cuenca hidrográfica

PARTE 3. PROGRAMA PARA EL MANEJO INTEGRAL DEL AGUA EN LA CUENCA DEL RÍO TIJUANA

3.1 Problemas Prioritarios
3.2 Programas vigentes asociados con los problemas prioritarios
3.3 Acciones instrumentadas y en proceso
3.4 convenios, acuerdos y estructuras intergubernamentales y sociales de coordinación transversal
3.5 estrategias para la solución de los problemas prioritarios
3.6 acciones requeridas
3.7 inversiones requeridas
3.8 posibles fuentes de financiamiento
3.9 Priorización de acciones y proyectos
3.10 Indicadores de sustentabilidad ambiental

ÍNDICE DE CUADROS
CUADRO 1 Principales acontecimientos que influyeron en la Cuenca del Río Tijuana
CUADRO 2 División y extensión administrativa de la Cuenca del Río Tijuana
CUADRO 3 Principales elevaciones de la Cuenca del Río Tijuana
CUADRO 4 Características principales del Río Tijuana
CUADRO 5 Subcuencas que conforman la Cuenca del Río Tijuana
CUADRO 6 Principales comunidades de vegetación en la Cuenca del Río Tijuana
CUADRO 7 Listado de especies de vegetación más notable en la Cuenca del Río Tijuana
CUADRO 8 Especies de fauna presentes en la Cuenca del Río Tijuana
CUADRO 9 Población total de la Cuenca del Río Tijuana (2010)
CUADRO 10 Algunas características demográficas de la población del municipio de Tijuana en la Cuenca del Río Tijuana (2010)
CUADRO 11 Algunas características demográficas de la población del municipio de Tecate en la Cuenca del Río Tijuana (2010)
CUADRO 12 Algunas características demográficas de la población del condado de San Diego en la Cuenca del Río Tijuana (2010)
CUADRO 13 Densidad de población en la Cuenca del Río Tijuana por municipio y condado (2010)
CUADRO 14 Proyecciones de población de principales localidades mexicanas en la Cuenca del Río Tijuana (2020-2030)
CUADRO 15 Proyecciones de población de las jurisdicciones del condado de San Diego en la Cuenca del Río Tijuana (2000-2050)
CUADRO 16 Proyecciones de población del condado de San Diego (2020-2060)
CUADRO 17 Organizaciones de la Sociedad Civil enfocadas a la conservación del medio ambiente en Tijuana (2015-2016)
CUADRO 18 Principales instituciones de educación superior en la Cuenca del Río Tijuana
CUADRO 19 Infraestructura dedicada a las artes y cultura en Tijuana y Tecate, B.C. y San Diego, California
CUADRO 20 Actas y acuerdos de la Comisión Internacional de Límites y Aguas relacionadas con la Cuenca del Río Tijuana
CUADRO 21 Organismos e instituciones involucradas en el manejo de los recursos naturales en la Cuenca del Río Tijuana
CUADRO 22 Principales tratados, convenios y programas binacionales México-Estados Unidos en materia ambiental

BIBLIOGRAFÍA
CUADRO 23 Principales leyes en materia de protección ambiental en México... 76
CUADRO 24. Legislación en materia de protección ambiental del agua en Estados Unidos.. 78
CUADRO 25 Legislación estatal aplicable a la protección ambiental en Baja California.. 79
CUADRO 26 Tasa de crecimiento poblacional por municipio.. 95
CUADRO 27 Población y tasa de crecimiento en Baja California.. 95
CUADRO 28 Pronóstico de población al año 2030... 96
CUADRO 29 Presas en territorio mexicano de la Cuenca del Río Tijuana.. 97
CUADRO 30 Disponibilidad media anual de agua subterránea en el acuífero del Río Tijuana (2014)... 98
CUADRO 31 Disponibilidad media anual de agua subterránea en el acuífero del Río Tecate (2014).. 98
CUADRO 32 Acuíferos de la Cuenca del Río Tijuana... 99
CUADRO 33 Plantas potabilizadoras en los municipios de Tecate y Tijuana.. 100
CUADRO 34 Volumen diario del caudal que se bombea del Río Tijuana hacia el Océano Pacífico (diciembre de 2013)........... 101
CUADRO 35 Plantas de tratamiento de aguas residuales en la Cuenca del Río Tijuana... 102
CUADRO 36 Resultados bacteriológicos de monitoreo de la zona costera de Tijuana... 103
CUADRO 37 Muestreo Estatal de Playas Limpias 2016... 104
CUADRO 38 Valores de los análisis del afluentes y efluente de la planta de Tratamiento de Aguas Residuales de Tecate (2003).... 105
CUADRO 39 Balance hídrico en el estado de Baja California... 106
CUADRO 40 Usos del agua demandada en el estado de Baja California.. 107
CUADRO 41. Volumenes (m³/anos) bombeados de agua cruda correspondiente al Acueducto del Río Colorado-Tijuana (ARCT)... 109
CUADRO 42 Tendencias de consumo de agua a partir del ARCT (2010-2018). ... 110
CUADRO 43 Cobertura de agua potable y drenaje sanitario en Tijuana y Tecate... 111
CUADRO 44 Número de casos de enfermedades hídricas en Tijuana.. 112
CUADRO 45 Número de casos de enfermedades hídricas en Tijuana, B.C. .. 112
CUADRO 46 Calidad de agua en la Cuenca del Río Tijuana (2016)... 123
CUADRO 47 Residuos sólidos recibidos en recinto sanitario de Tijuana... 126
CUADRO 48 Infraestructura para el manejo de residuos sólidos urbanos en Tecate... 126
CUADRO 49 Recolección de neumáticos usados en el Catoned II.. 128
CUADRO 50 Carga de sedimentos del Río Tijuana en la frontera Estados Unidos-México.. 130
CUADRO 51 Principales balnearios en la Cuenca del Río Tijuana... 130
CUADRO 52 Trabajadores transmigrantes de Tijuana, e Ingreso promedio mensual (pesos) de las personas de acuerdo con el lugar donde trabajan de los residentes de municipios de la frontera norte de México... 139
CUADRO 53 Población y tasa anual de crecimiento municipal.. 141
CUADRO 54 Población urbana de la Cuenca del Río Tijuana por municipio.. 142
CUADRO 55 Porcentaje de población municipal.. 142
CUADRO 56 Área urbana por zona (km²).. 144
CUADRO 57 Documentos clave en la planeación del Valle del Río Tijuana... 144
CUADRO 58 Actividades de restauración y protección en la Cuenca del Río Tijuana (1980 a 2014)... 155
CUADRO 59 Volumen de producción del sector primario 2011 en la Zona Metropolitana de Tijuana (toneladas)*................ 155
CUADRO 60 Valor de la producción del sector secundario (millones de pesos).. 159
CUADRO 61 Valor de la producción del sector terciario (millones de pesos)... 160
CUADRO 62 Población empleada en los municipios de la Cuenca del Río Tijuana (2010).. 161
CUADRO 63 Producto Interno Bruto (millones de pesos-dólares) en los municipios de la Cuenca del Río Tijuana.................. 162
CUADRO 64 Ingresos per cápita en los municipios de la Cuenca del Río Tijuana (2010).. 162
CUADRO 65 Volumen de madera en los municipios de Baja California... 162
CUADRO 66 Indicadores relacionados con el cumplimiento de las NOM-2008 de la ciudad de Tijuana.................................... 166
CUADRO 67 Indicadores relacionados con el cumplimiento de las NOM-2008 de la ciudad de Tecate...................................... 167
CUADRO 68 Concentraciones de contaminantes en el condado de San Diego 2006-2015.. 168
CUADRO 69 Superficie sembrada por cultivo, ciclo y modalidad en el municipio de Tijuana, 2015 (hectáreas)........................ 170
CUADRO 70 Superficies sembradas por zona, cultivos cíclicos más perenes en el municipio de Tecate, 2015 (hectáreas)......... 171
CUADRO 71 Ramas industriales que sobrepasan los límites permisibles de la NOM-002-SEMARNAT- 1996 en la Ciudad de Tijuana.. 173
CUADRO 72 Empresas registradas como generadoras de residuos de manejo especial, Tecate, B.C.. 174
CUADRO 73 Incendios forestales y superficie afectada en los municipios de Tijuana y TECATE de la CRT.................................. 175
CUADRO 74 Riesgo de deforestación en los municipios de la Cuenca del Río Tijuana.. 176
CUADRO 75 Análisis Económico de la parte estadounidense de la Cuenca del Río Tijuana (2009)... 176
CUADRO 76 Análisis Económico de la parte mexicana de la Cuenca del Río Tijuana (2009).. 180
CUADRO 77 Porcentaje de población según carencias sociales para la zona metropolitana de Tijuana, 2010.......................... 183
CUADRO 78 Porcentaje de población según indicadores de pobreza en los municipios de Tecate y Tijuana (2010)................ 187
CUADRO 79 Porcentaje de población según indicadores de pobreza en los municipios de Tecate y Tijuana (2015)................. 187
CUADRO 80 Población en condición de pobreza en el condado de San Diego, California 2000-2014.......................... 190
CUADRO 81 Población total, indicadores socioeconómicos, índice y grado de marginación a nivel estatal y municipal (2010).... 193
CUADRO 82 Índice de marginación a nivel de localidad 2010 Municipio de Tecate... 193
CUADRO 33 ÍNDICE DE MARGINACIÓN A NIVEL DE LOCALIDAD 2010 MUNICIPIO DE Tijuana

CUADRO 84 INVERSIONES EN LOS CUATRO EJES RECTORES DE LA AGENDA DEL AGUA 2030 REGIÓN HIDROLÓGICO-ADMINISTRATIVO I. PENÍNSULA DE BAJA CALIFORNIA

CUADRO 85 INVERSIONES POR SECTOR O TIPO DE MEDIDA

CUADRO 86 INVERSIONES EN MATERIA DE AGUA EN BAJA CALIFORNIA (MILLONES DE PESOS)

CUADRO 87 MONTO AUTORIZADO POR PROGRAMA SEGÚN ORGANISMO OPERADOR DEL AGUA (2016)

CUADRO 88 PRESUPUESTO OPERATIVO DE LA AUTORIDAD DEL AGUA DE SAN DIEGO (2016-2017)

CUADRO 89 TARIFAS POR CONSUMO DE AGUA EN Tijuana ENERO DE 2018

CUADRO 90 TARIFAS POR CONSUMO DE AGUA EN Tecate. ENERO DE 2018

CUADRO 91 TARIFA MENSUAL PARA CONSUMIDORES DOMÉSTICOS EN San Diego, CA AGOSTO DE 2017

CUADRO 92 COSTO DEL MONTO BASE SEGÚN TAMAÑO DE MEDIDOR DE AGUA

CUADRO 93 INDICADORES DE GESTIÓN CESPT 2016 AGUA POTABLE

CUADRO 94 INDICADORES DE GESTIÓN CESPT ACUMULADO 2014-2015 AGUA POTABLE

CUADRO 95(continuación). INDICADORES DE GESTIÓN CESPT ACUMULADO 2014 ALCANTARILLADO SANITARIO

CUADRO 96 PRESUPUESTO Y OPERACIÓN DEL SISTEMA DE AGUA POTABLE DE SAN DIEGO (DÓLARES)

ÍNDICE DE MAPAS

MAPA 1 UBICACIÓN Y DELIMITACIÓN DE LA CUENCA DEL RÍO Tijuana

MAPA 2 DIVISIÓN ADMINISTRATIVA DE LA CUENCA DEL RÍO Tijuana

MAPA 3 GEOLOGÍA DE LA CUENCA DEL RÍO Tijuana

MAPA 4 HIDROGRAFÍA DE LA CUENCA DEL RÍO Tijuana

MAPA 5 SUBCUENCAS DE LA CUENCA DEL Río Tijuana

MAPA 6 USOS DEL SUELO DE LA CUENCA DEL RIO Tijuana (2005)

MAPA 7 VEGETACIÓN DE LA CUENCA DEL RIO Tijuana (2005)

MAPA 8. DISTRIBUCIÓN DE LAS PRINCIPALES LOCALIDADES EN LA CUENCA DEL RIO Tijuana

MAPA 9 CONDICIONES DE SEQUÍA A FEBRERO DE 2018

MAPA 10 VULNERABILIDAD CLIMÁTICA A NIVEL MUNICIPAL EN 2014

MAPA 11 DISTRIBUCIÓN ESPACIAL DE LA POBLACIÓN QUE NO ESTÁ CONECTADA AL SISTEMA DE DRENAJE EN Tijuana

MAPA 12 DISTRIBUCIÓN ESPACIAL DE LA POBLACIÓN QUE ESTÁ CONECTADA AL DRENAJE Y QUE NO DISPONE DE AGUA ENTUBADA EN LA VIVIENDA EN Tijuana

MAPA 13 DISTRIBUCIÓN ESPACIAL DE LA POBLACIÓN QUE NO ESTÁ CONECTADA AL SISTEMA DE DRENAJE EN Tecate, B.C.

MAPA 14 DISTRIBUCIÓN ESPACIAL DE LA POBLACIÓN QUE NO ESTÁ CONECTADA AL DRENAJE Y QUE NO DISPONE DE AGUA ENTUBADA EN LA VIVIENDA EN Tecate.

MAPA 15 ZONAS URBANAS EN LA CUENCA DEL RIO Tijuana 1990-2015

MAPA 16 CONCENTRACIONES PROMEDIO EN LA CIUDAD DE Tijuana PM10 (mg/m3) (PERIODO 2000-2009)

MAPA 17 UBICACIÓN DE LAS ESTACIONES DE MONITOREO, SAN DIEGO, 2015

MAPA 18 LOCALIZACIÓN DE SITIOS CON MANEJO DE MATERIALES PELIGROSOS, Tijuana, B.C.

MAPA 19 LA CUENCA DEL RIO Tijuana CON LOS 27 PUNTOS DE MALLA USADOS PARA EL MODELAJE

MAPA 20 GRADO DE REZAGO SOCIAL PARA LA ZONA METROPOLITANA DE Tijuana, 2010
ÍNDICE DE FOTOGRAFÍAS

<table>
<thead>
<tr>
<th>Fotografía</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Proyecto Río Parque Tecate, Tecate, B.C.</td>
<td>39</td>
</tr>
<tr>
<td>2</td>
<td>Vista aérea de Ecoparque, El Colef, Tijuana, B.C.</td>
<td>41</td>
</tr>
<tr>
<td>3</td>
<td>Restauración del cauce del Río Tecate, 2012</td>
<td>42</td>
</tr>
<tr>
<td>4</td>
<td>Actividades del Tijuana River Valley Recovery Team, 2011</td>
<td>42</td>
</tr>
<tr>
<td>5</td>
<td>Acciones del Tijuana River Action Network (TRAN)</td>
<td>43</td>
</tr>
<tr>
<td>6</td>
<td>Labores de limpieza en el Río Tecate, Tecate, B.C.</td>
<td>43</td>
</tr>
<tr>
<td>7</td>
<td>Universidad Autónoma de Baja California, Tijuana, B.C.</td>
<td>45</td>
</tr>
<tr>
<td>8</td>
<td>Instituto Tecnológico de Estudios Superiores de Tijuana, Tijuana, B.C.</td>
<td>47</td>
</tr>
<tr>
<td>9</td>
<td>Centro de Enseñanza Técnica y Superior, Tijuana, B.C.</td>
<td>48</td>
</tr>
<tr>
<td>10</td>
<td>Universidad Iberoamericana Noroeste, Tijuana, B.C.</td>
<td>49</td>
</tr>
<tr>
<td>11</td>
<td>Universidad Xochicalco, Tijuana, B.C.</td>
<td>50</td>
</tr>
<tr>
<td>12</td>
<td>El Colegio de la Frontera Norte, Tijuana, B.C.</td>
<td>51</td>
</tr>
<tr>
<td>13</td>
<td>San Diego State University, San Diego, California</td>
<td>52</td>
</tr>
<tr>
<td>14</td>
<td>University of California, San Diego</td>
<td>53</td>
</tr>
<tr>
<td>15</td>
<td>University of San Diego, San Diego, California</td>
<td>54</td>
</tr>
<tr>
<td>16</td>
<td>Casa de la Cultura, Colonia Altamira, Tijuana, B.C.</td>
<td>56</td>
</tr>
<tr>
<td>17</td>
<td>Casa de la Cultura Playas, Tijuana, B.C.</td>
<td>57</td>
</tr>
<tr>
<td>18</td>
<td>Instituto Municipal de Arte y Cultura, Tijuana, B.C.</td>
<td>57</td>
</tr>
<tr>
<td>19</td>
<td>Centro Cultural Tijuana, Tijuana, B.C.</td>
<td>58</td>
</tr>
<tr>
<td>20</td>
<td>Centro Estatal de las Artes, Tijuana, B.C.</td>
<td>58</td>
</tr>
<tr>
<td>21</td>
<td>Centro de las Artes Musicales, Tijuana, B.C.</td>
<td>58</td>
</tr>
<tr>
<td>22</td>
<td>Multiforo, Instituto de Cultura de Baja California, Tijuana, B.C.</td>
<td>59</td>
</tr>
<tr>
<td>23</td>
<td>El Trompo Museo Interactivo, Tijuana, B.C.</td>
<td>59</td>
</tr>
<tr>
<td>24</td>
<td>Museo Ámbar, Tijuana, B.C.</td>
<td>60</td>
</tr>
<tr>
<td>25</td>
<td>Centro Cultural Tecate, Tecate, B.C.</td>
<td>60</td>
</tr>
<tr>
<td>26</td>
<td>Centro Estatal de las Artes, Tecate, B.C.</td>
<td>60</td>
</tr>
<tr>
<td>27</td>
<td>Parque del Profesor, Tecate, B.C.</td>
<td>61</td>
</tr>
<tr>
<td>28</td>
<td>San Diego Natural History Museum, Balboa Park, San Diego, California</td>
<td>61</td>
</tr>
<tr>
<td>29</td>
<td>San Diego Museum of Man, Balboa Park, San Diego, California</td>
<td>61</td>
</tr>
<tr>
<td>30</td>
<td>The New Children’s Museum, San Diego, California</td>
<td>62</td>
</tr>
<tr>
<td>31</td>
<td>Museum of Contemporary Art, San Diego, California</td>
<td>62</td>
</tr>
<tr>
<td>32</td>
<td>Museum of Photographic Arts, Balboa Park, San Diego, California</td>
<td>62</td>
</tr>
<tr>
<td>33</td>
<td>U.S.S. Midway Museum, Bahía de San Diego, California</td>
<td>63</td>
</tr>
<tr>
<td>34</td>
<td>Mingei International Museum, Balboa Park, San Diego, California</td>
<td>63</td>
</tr>
<tr>
<td>35</td>
<td>San Diego Air & Space Museum, Balboa Park, San Diego, California</td>
<td>63</td>
</tr>
<tr>
<td>36</td>
<td>San Diego History Center, Balboa Park, San Diego, California</td>
<td>64</td>
</tr>
<tr>
<td>37</td>
<td>Campaña de limpieza del cauce del río Tijuana, San Diego, California</td>
<td>72</td>
</tr>
<tr>
<td>38</td>
<td>Efectos de lluvias intensas en Tijuana</td>
<td>90</td>
</tr>
<tr>
<td>39</td>
<td>Crecida de arroyo en Tijuana</td>
<td>91</td>
</tr>
<tr>
<td>40</td>
<td>Tiradero clandestino clausurado en Tijuana</td>
<td>127</td>
</tr>
<tr>
<td>41</td>
<td>Vista del cauce de la subcuenca Los Laureles, agosto de 2004</td>
<td>129</td>
</tr>
<tr>
<td>42</td>
<td>Vista del cauce de la subcuenca Los Laureles, noviembre de 2004</td>
<td>129</td>
</tr>
</tbody>
</table>
1.1 EL CONTEXTO FÍSICO, HISTÓRICO Y ADMINISTRATIVO

Ubicación y delimitación

La cuenca hidrográfica es una porción de la superficie terrestre cuya extensión puede variar de algunas decenas de metros a millones de kilómetros cuadrados, cuyos límites reciben el nombre de “parteaguas”. Los parteaguas son líneas imaginarias sobre el relieve y determinan la dirección que toman los escurrimientos de agua, ya sea que ésta provenga de lluvias, derretimiento de la nieve o hielo. En ocasiones es fácil identificar los parteaguas sobre el terreno, por ejemplo, en zonas con relieve escarpado, los parteaguas están representados por las crestas de montañas, sierras o cualquier estructura que sobresalga del terreno, mientras que en zonas planas como llanuras o planicies, el parteaguas lo representan las superficies más prominentes del terreno. La cuenca hidrográfica es, por lo tanto, un área natural de captación de agua, la cual es conducida por gravedad a través de los canales de arroyos y ríos hacia una corriente principal que desemboca en el mar, lago o incluso en otra corriente (para el caso de las subcuencas).

La Cuenca del Río Tijuana (CRT) se ubica en el extremo Noroeste de México en el estado de Baja California, representando la cuenca hidrográfica más septentrional que desemboca en el Océano Pacífico (ver MAPA 1). Por su localización la CRT ocupa un área que es compartida con el estado norteamericano de California, por lo que la hace una cuenca binacional, al estar el 73% de su superficie en México y el 27% en Estados Unidos (CONAGUA, 2015). Esta es una de las características más importante que define a la CRT respecto a otras cuencas del país.

1 Una primera versión de la Parte 1 de este documento se presento con el título “Diagnóstico Socioambiental para el Programa del Manejo Integral del Agua de la cuenca del Río Tijuana, 15 de marzo de 2017, coordinado por Carlos A. de la Parra Rentería y colaboradores.
La CRT tiene una extensión de aproximadamente 4,452 km², y tiene su origen en la parte mexicana a través del Arroyo Las Calabazas que nace en las vertientes de la Sierra de Juárez a una altitud de 1,860 metros sobre el nivel medio del mar (msnm). Con una orientación hacia el Noroeste, esta corriente recibe las aguas del Arroyo La Ciénega en la localidad de El Testerazo, para posteriormente recibir los caudales del Arroyo Seco en el poblado de Valle de las Palmas, donde la corriente principal recibe el nombre de esta misma localidad. Después de cruzar un cañón estrecho, las aguas llegan al vaso de la presa Abelardo L. Rodríguez, próxima a la ciudad de Tijuana.

La corriente que inicia su recorrido aguas debajo de la cortina de la presa Abelardo L. Rodríguez recibe el nombre de Río Tijuana, el cual recibe las aguas del Arroyo Alamar a 11 km de este punto, esta corriente que se origina en territorio de Estados Unidos (Pine Valley Creek) a una altitud de 1,944 msnm en las montañas de Cuyamaca, captando a su paso las aguas del Arroyo Tecate. El Río Tijuana cruza de oriente a poniente la ciudad de Tijuana y desemboca en el Océano Pacífico a 2.10 km al norte de la línea internacional entre México y Estados Unidos.
Antecedentes históricos

El primer grupo que habitó en esta región fueron los kumiai, cultura que se extendió desde Torrey Pine, en California, hasta la zona central de Baja California. Las evidencias del grupo kumiai sugieren su presencia en el valle del Río Tijuana en tiempos de la llegada de los españoles (Shipek en Ojeda y Espejel, 2008). Una vez que se estableció la misión de San Diego en la Alta California (1769), el valle del Río Tijuana se convirtió en una zona ganadera básicamente. Para 1770 se estima que entre 16,000 y 20,000 habitantes del grupo kumiai vivían en California y Baja California. Entre las rancherías indígenas que pertenecían a esta misión figuraba la de Tía Juana, de la que hay constancia desde 1809. En el siglo XIX la actividad productiva en la CRT se definió por la colonización de tierras y una actividad ganadera ampliamente extendida, pero sobre todo por la cercanía de dos países con características muy diferentes con consecuencias mutuamente dependientes (Piñera, 1991 en Ojeda y Espejel, 2008).

Con la firma del Tratado de Guadalupe Hidalgo en 1848 se crearon nuevos límites entre México y Estados Unidos, por lo que la nueva línea fronteriza dividió la CRT en dos territorios. En la parte norteamericana el entorno natural de la Cuenca se incorporó a una economía con un alto nivel de desarrollo, mientras que por la parte mexicana se caracterizó por el poblamiento disperso y su aislamiento con el centro del país, por lo tanto, la modificación antropica del paisaje fue poco significativa.

En la primera mitad del siglo XX se iniciaron las construcciones de grandes obras de infraestructura como las presas Barret (1919-1922) y Morena (ampliada en 1930) en Estados Unidos; el ferrocarril de Tijuana a Tecate (1909-1919) y la Presa Abelardo L. Rodríguez (1937) localizada al sureste de la ciudad de Tijuana, son ejemplo de algunas obras de ingeniería que marcaron el futuro de la región hasta ese momento.

La escasez del recurso agua en la Cuenca ha sido un problema desde su incipiente poblamiento, por lo que fue necesario construir obras hidráulicas para su captación y almacenamiento. La construcción de la presa Abelardo L. Rodríguez, en el lado mexicano, constituyó uno de los grandes esfuerzos que se ha hecho para resolverlos. Con su construcción se pretendió lograr la estabilidad económica de la parte mexicana a través del desarrollo de la agricultura local, el aumento de población de origen mexicano, la protección contra las fuertes avenidas del Río Tijuana en época de lluvias y el abastecimiento de una fuente segura de agua potable para la población.

La llegada de importantes flujos migratorios a la región con la intención de establecerse en California, el número creciente de “repatriados” deportados a la frontera provenientes de Estados Unidos y al propio crecimiento natural de la población local, produjo la ocupación de zonas no aptas para el desarrollo urbano de Tijuana y en menor medida en Tecate. Una de estas zonas fue la que se encuentra entre la garita internacional, el Puente México (que conducía al centro urbano) y el cauce del Río Tijuana. Esta zona fue destino de cientos de personas que levantaron sus viviendas sin autorización ni control alguno, exponiéndose a un desastre en el caso de que aumentaran los
volúmenes del Río Tijuana desfogados desde la presa Abelardo L. Rodríguez. Posteriormente se ocuparon las zonas de cañones en la vertiente sur del valle del Río Tijuana.

Por lo que respecta a Tecate, su crecimiento urbano fue incipiente hasta muy entrado el siglo XX. El crecimiento de los caseríos hacia el sur del pueblo de Tecate estaba limitado por el cauce del río y hacia el norte por una ciénega que frecuentemente se inundaba debido a los arroyos que llegaban a México provenientes de Estados Unidos. Este lugar actualmente es ocupado por la Plaza Hidalgo, en el centro urbano de Tecate. Una vez creada la municipalidad de Tecate en 1917, se procedió a levantar el primer plano de la ciudad. Uno de los primeros intentos de planear el crecimiento urbano de Tecate, fue rellenar la ciénega en el centro de la ciudad, gracias a esta obra, disminuyeron las inundaciones provocadas por las corrientes que entraban a territorio mexicano por esta frontera. Del mismo modo realizaron obras para emparejar calles, avenidas y algunos terrenos para los edificios públicos (Walther, 1985, Santiago, 2002 citado por Rodríguez Esteves, 2007).

Durante la década de 1960 la CRT experimenta un desarrollo económico que definirá el crecimiento futuro de los asentamientos, sobre todo en la parte mexicana. En la ciudad de Tijuana, por ejemplo, se impulsó el desarrollo del sector productivo al establecerse nuevas industrias en la ciudad. El establecimiento de industrias y nuevos comercios desencadenó el asentamiento de manera irregular de un gran número de personas sobre laderas de cerros y cañones, cuyos arroyos desembocan en el Río Tijuana.

Para regularizar y controlar las continuas crecidas del río, se inició con la canalización del Río Tijuana, siendo la obra de ingeniería hidráulica más importante construida en la ciudad de Tijuana hasta ese momento. Las obras iniciaron en 1972 y pretendía resolver una parte del problema de las inundaciones que afectaban la ciudad. Al urbanizarse la zona se terminó con lo que denominó como Cartolandia (barrio localizado cerca de la línea internacional y continuo al Puente México), asentamiento precario que recibía a personas recién llegadas a la ciudad. La obra de canalización se planeó en tres etapas: la primera comprendió, una superficie de 160 hectáreas, en un tramo de 4,500 metros, partiendo de la línea internacional hasta el puente del ferrocarril próximo al Centro Escolar Agua Caliente; la segunda, desde dicho puente hasta la confluencia del Río Tijuana con el Arroyo Alamar; y la tercera, desde este punto, hasta la cortina de la presa Abelardo L. Rodríguez.

La historia del poblamiento y consolidación económica de la CRT está caracterizada por diversos eventos que ha dejado huella en alguno de los dos países pero que han afectado, de una manera u otra, a su contraparte al otro lado de la frontera. El CUADRO 1 muestra un resumen de estos acontecimientos.
CUADRO 1 Principales acontecimientos que influyeron en la Cuenca del Río Tijuana

<table>
<thead>
<tr>
<th>Año</th>
<th>Acontecimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>1848</td>
<td>Firma del Tratado Guadalupe Hidalgo, donde se establecieron los nuevos límites entre México y Estados Unidos, quedando dividida la CRT</td>
</tr>
<tr>
<td>1874</td>
<td>Establecimiento de la aduana fronteriza en Tijuana, con lo que se regula el comercio en esta región fronteriza</td>
</tr>
<tr>
<td>1874</td>
<td>Se registraron lluvias intensas que aumentaron el nivel del Río Tijuana hasta en cinco metros</td>
</tr>
<tr>
<td>1888</td>
<td>Fundación del pueblo de Tecate, y un año después Tijuana</td>
</tr>
<tr>
<td>1900</td>
<td>Tijuana contó con 242 habitantes, Tecate con 127 habitantes</td>
</tr>
<tr>
<td>1909</td>
<td>Construcción del Ferrocarril de Tijuana-Tecate</td>
</tr>
<tr>
<td>1919</td>
<td>Inicio de la construcción de la presa Barret, en San Diego, California</td>
</tr>
<tr>
<td>1937</td>
<td>Se termina la construcción de la Presa Abelardo L. Rodríguez en Tijuana, con capacidad de 137 millones de m³ en el embalse de 550 hectáreas</td>
</tr>
<tr>
<td>1950</td>
<td>Tijuana contó con 59,952 habitantes, Tecate llegó a 3,681 habitantes</td>
</tr>
<tr>
<td>1978</td>
<td>Se termina la construcción de la presa El Carrizo en el municipio de Tecate, con una capacidad de 40 millones de m³ que servirá como vaso regulador del Acueducto Río Colorado-Tijuana</td>
</tr>
<tr>
<td>1980</td>
<td>Se concluye la construcción del Acueducto Río Colorado-Tijuana, cuyo objetivo es la conducción de agua desde el valle de Mexicali a Tecate, Tijuana y Playas de Rosarito</td>
</tr>
<tr>
<td>1993</td>
<td>Debido a la gran captación de agua en la Presa Abelardo L. Rodríguez se construyó el Acueducto Presa Rodríguez - Planta Potabilizadora El Florido, la cual entra en operación con una capacidad de tratamiento de 4.0 m³/seg.</td>
</tr>
<tr>
<td>1993</td>
<td>Se registran lluvias intensas que afectan los municipios de Tijuana y Tecate, afectando de manera generalizada a la primera</td>
</tr>
<tr>
<td>1998</td>
<td>Durante el mes de febrero de este año se precipita el 100% de las lluvias promedio anuales en la CRT, ocasionando inundaciones y la incomunicación de una buena parte de la población</td>
</tr>
<tr>
<td>2010</td>
<td>La zona urbana de Tijuana supera las 34,300 hectáreas y Tecate las 2,500 hectáreas</td>
</tr>
</tbody>
</table>

FUENTE: Elaboración propia con información de XXII Ayuntamiento de Tijuana, s/f.; CESPT, 2017; Conklin, 1988, citado por Rodríguez Esteves, Juan Manuel; CESPT, 2017; INEGI. Archivo histórico de localidades, 2016.

El crecimiento poblacional en la CRT es relativamente reciente, especialmente si se compara con otras regiones del sur de México o norte de Estados Unidos. La condición de cuenca binacional indica que buena parte de su desarrollo esté determinada por decisiones que se toman en ambas naciones. En un segundo plano, se encuentra la división municipal en la parte mexicana, los municipios de Tijuana y Tecate pueden representar dos formas diferentes de gestión para el manejo de los recursos que se encuentran en sus territorios. Por otro lado, sobresalen las obras de ingeniería que tienen el objeto de “controlar” las crecidas de ríos y arroyos para la protección de la población asentada en las márgenes de los cauces y para el abastecimiento de los principales ciudades de la Cuenca.

Un elemento central para la dotación de agua en los asentamientos humanos de la CRT desde la década de 1980 fue la construcción y puesto en operación del Acueducto Río Colorado-Tijuana. Esta obra conduce el agua del Río Colorado desde el valle de Mexicali, bombeando el agua hasta 1,000 metros para cruzar la sierra La Rumorosa, y de este punto por gravedad hasta la presa El Carrizo, ubicada entre las ciudades de Tecate y Tijuana. El trasvase del recurso hídrico de una cuenca a otra es un indicador que la CRT no puede proveer el agua suficiente para cubrir las necesidades de la población, de su planta productiva y de los usos ambientales.
División administrativa

En la parte mexicana la superficie de la CRT mayoritariamente corresponde al municipio de Tecate (42%), en menor proporción se ubica Tijuana y Ensenada (ver CUADRO 2). En esta parte de la Cuenca se ubican las ciudades de Tijuana y Tecate, un número importante de localidades como Valle de las Palmas, Nueva Colonia Hindú, Héroes del Desierto, El Hongo, los Ejidos Baja California y Chula Vista, también incluyen comunidades indígenas como San José de Tecate, Juntas de Nejí, Peña Blanca, Aguaje de la Tuna, etc. (ver MAPA 2).

CUADRO 2 División y extensión administrativa de la Cuenca del Río Tijuana

<table>
<thead>
<tr>
<th>País</th>
<th>Municipio/condado</th>
<th>Total</th>
<th>Ubicada dentro de la cuenca</th>
<th>Porcentaje dentro de la cuenca</th>
</tr>
</thead>
<tbody>
<tr>
<td>México</td>
<td>Tijuana</td>
<td>1,253</td>
<td>914</td>
<td>20.53</td>
</tr>
<tr>
<td></td>
<td>Tecate</td>
<td>2,724</td>
<td>1,888</td>
<td>42.41</td>
</tr>
<tr>
<td></td>
<td>Ensenada</td>
<td>53,237</td>
<td>438</td>
<td>9.84</td>
</tr>
<tr>
<td>Estados Unidos</td>
<td>San Diego</td>
<td>11,722</td>
<td>1,212</td>
<td>27.22</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>68,936</td>
<td>4,452</td>
<td>100</td>
</tr>
</tbody>
</table>

A nivel municipal Tijuana se ubica en el extremo noroeste del estado de Baja California, limita al norte con el estado de California, Estados Unidos; al sur con los municipios de Playas de Rosarito y Ensenada; al este con el municipio de Tecate y al oeste con el Océano Pacífico. Sus coordenadas geográficas extremas son 32°12'10" - 32°43'' de latitud norte y 116° 39' - 117° 06’ de longitud oeste. Para su administración y operación Tijuana está dividida en nueve delegaciones municipales con una extensión total de 1,253 km².

El municipio de Tecate se sitúa al norte del estado de Baja California, limita al norte con Estados Unidos; al sur con el municipio de Ensenada, al este con el municipio de Mexicali y al oeste con el municipio de Tijuana. Sus coordenadas geográficas son 32° 13' 00'' - 32° 34' 30' latitud norte y 115° 40' 20'' - 116° 30' 00'' de longitud oeste. Su división política comprende la cabecera municipal y seis delegaciones. El municipio de Tecate posee una extensión territorial de 2,724 km² (PMDT, 2014-2016:26).

El municipio de Ensenada colinda al norte con los municipios de Playas de Rosarito, Tijuana, Tecate y Mexicali; al oeste con el Océano Pacífico; al este con el municipio de Mexicali y el Golfo de California y al sur con el estado de Baja California Sur. Sus coordenadas geográficas comprenden los 28° 00' 00'' - 32° 12' 10'' de latitud norte y 115° 22' 50'' - 116° 53' 03'' de longitud oeste. Su división política comprende una cabecera municipal y 22 delegaciones municipales. Por su extensión territorial (53,237 km²), lo coloca como el municipio más grande a nivel nacional.

En el lado estadounidense el 93% de la superficie de la CRT se encuentra bajo la jurisdicción del condado de San Diego, incluyendo a las comunidades rurales de Tecate, Barret, Morena, Campo, Boulevard, Dulzura y Pine Valley, así...
como una pequeña parte de Otay Mesa, San Ysidro e Imperial Beach, además de las reservas indígenas como Kumiai de Campo, Manzanita, La Posta y Cuyapaipe (Ganster, 2010).

El condado de San Diego se localiza en el extremo suroeste del estado de California, Estados Unidos, limita al norte con el condado de Riverside, al noroeste con el condado de Orange, al sur con los municipios de Tijuana y Tecate en Baja California, al este con el condado Imperial y al oeste con el Océano Pacífico. Sus coordenadas geográficas son 33° 30' 17" – 32° 32' 14 de latitud norte y 116° 04' 58" - 117° 35' 49" de longitud oeste, posee una superficie de 11,722 km². De su extensión total, 1,212 km² se ubican en la CRT.

MAPA 2 División administrativa de la Cuenca del Río Tijuana

FUENTE: El Colegio de la Frontera Norte (EL COLEF), Unidad de Servicios Estadísticos y Geomática (USEG), 2017.

Aspectos físicos

El entorno físico de la CRT es el resultado de la interacción de procesos naturales que modelan la superficie terrestre. En una primera instancia se tiene a la litósfera, que es la capa rígida y externa de la Tierra y está formada por las rocas. La atmósfera es la capa gaseosa que envuelve a la Tierra y abarca toda su superficie hasta una altura media de 12 km. La hidrósfera es el conjunto de la superficie terrestre cubierta por agua, abarca las superficies ocupadas por los océanos, ríos, lagos y otros cuerpos de agua. Finalmente se tiene a la biósfera, la cual hace referencia a esa

15
pequeña superficie externa del planeta donde interactúa la litósfera, atmósfera y la hidrósfera para dar sustento a los organismos vivientes como lo es la flora y la fauna (SDSU, 2005). Los elementos que caracterizan el entorno físico de la CRT se presentan a continuación.

Relieve

La CRT presenta diversas formas del relieve que van desde áreas planas hasta áreas agrestes, es decir, varían desde un estuario en la desembocadura del Río Tijuana hasta montañas de bosques de pinos en el noreste y sureste. Las mayores elevaciones se localizan en el extremo noreste, en el condado de San Diego, California, donde se alcanza una altura de 1,944 msnm. La pendiente no es muy uniforme debido a que la superficie ha sido disectada por la acción erosiva de las corrientes de agua, tal y como se presentan en sus valles fluviales, y la mayor parte del suelo comprende laderas que exceden el 25% de pendiente (Wright, 2005:5). Las mesetas y relieves costeros, los amplios valles interiores que incluyen los de Tijuana, Alamar, Las Palmas y una altiplanicie y montanas en la orilla este de la Cuenca, integran el panorama general del relieve de la Cuenca. Las principales elevaciones de la Cuenca se presentan en el CUADRO 3.

<table>
<thead>
<tr>
<th>Elevación</th>
<th>Altitud (msnm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cerro Colorado</td>
<td>500</td>
</tr>
<tr>
<td>Otay</td>
<td>1,087</td>
</tr>
<tr>
<td>San Isidro</td>
<td>840</td>
</tr>
<tr>
<td>El Carmelo</td>
<td>880</td>
</tr>
<tr>
<td>Gaskill</td>
<td>1,169</td>
</tr>
<tr>
<td>Tecate</td>
<td>1,184</td>
</tr>
<tr>
<td>Grande</td>
<td>900</td>
</tr>
<tr>
<td>Gordo</td>
<td>1,040</td>
</tr>
<tr>
<td>Corte Madera</td>
<td>1,419</td>
</tr>
<tr>
<td>Morena Butte</td>
<td>1,195</td>
</tr>
<tr>
<td>San Javier</td>
<td>1,200</td>
</tr>
<tr>
<td>Los Monos</td>
<td>1,100</td>
</tr>
<tr>
<td>Peña Blanca</td>
<td>1,200</td>
</tr>
<tr>
<td>La Hiedra</td>
<td>1,020</td>
</tr>
<tr>
<td>Gill</td>
<td>1,125</td>
</tr>
<tr>
<td>Nejí</td>
<td>1,360</td>
</tr>
<tr>
<td>Cuyapaipe</td>
<td>1,944</td>
</tr>
<tr>
<td>La Sierrita</td>
<td>1,580</td>
</tr>
<tr>
<td>San Pedro</td>
<td>1,800</td>
</tr>
</tbody>
</table>

FUENTE: Wright, 2005.

Geología y suelos

La CRT se encuentra en una región de geología compleja propia de las cordilleras peninsulares del Sur de California y de Baja California. El tipo de roca dominante en la parte alta de la Cuenca (hacia el este) consiste en rocas plutónicas de las cordilleras batolíticas peninsulares. Las rocas batolíticas varían desde gabro a granito y se pueden dividir en dos grupos basados en su composición, edad y deformación. El grupo oeste es más antiguo y deforme que el grupo...
este (Deméré, 2005). Las eras geológicas de las rocas de núcleo batolítico abarcan desde el Paleozoico (hace 570 millones de años) hasta el Periodo Cuaternario (hace 1.8 millones de años). En dirección oeste predominan las rocas ígneas intrusivas ácidas e intrusivas intermedias de la era mesozoica (230 millones de años), encontrándose también granito, cuarzo y diorita. En las partes bajas de la Cuenca las rocas son sedimentarias cenozoicas de edad oligocena, miocena, pliocena y pleistocena, es decir, más recientes que las primeras (ver MAPA 3).

Por otro lado existen tres elementos que controlan el desarrollo de los suelos en la CRT: a) clima semiárido, b) vegetación escasa dominada por matorrales pastizales y c) geomorfología con poca cobertura vegetal y gran variedad de formas del relieve. La parte baja de la Cuenca y en las estribaciones del lado estadounidense dominan los entisoles e inceptisoles. Al interior, a elevaciones mayores y con cobertura vegetal más estable, predominan en los suelos zonales los alfisoles y molisoles. Los vertisoles se encuentran esparcidos en toda la Cuenca dependiendo del contenido de arcilla con tendencia a expandirse o contraerse (Greenwood, 2005).

Para la parte mexicana de la Cuenca, predominan los suelos como el litosol, propio de las zonas montañosas, son suelos que en promedio miden 10 cm de profundidad. Los suelos tipo regosol, son característicos...
de las playas, dunas y en algunas laderas de las sierras, poseen un tono claro y no presentan capas distintas, su productividad agrícola está en función a su profundidad y a sistemas de riego. Este tipo de suelos se encuentran en la zonas de lomeríos en la margen izquierda del Río Tijuana. Los leptosoles son suelos que se encuentran al este de la ciudad de Tijuana y en el municipio de Tecate, se caracterizan por ser suelos delgados y no consolidados, con menos de 10% de tierra fina. Los vertisoles se encuentran en zonas restringidas en la Cuenca media, son suelos de sedimentos y por lo tanto contienen elevadas concentraciones de arcillas. También se encuentran pequeñas áreas con luvisol en el municipio de Tecate próximos a El Testerazo, se caracterizan por originarse de materiales no consolidados, donde las arcillas se depositan en las zonas más bajas del suelo (Gobierno del Estado, 2017, INEGI, 2017).

Clima
El clima se refiere al conjunto de fenómenos meteorológicos que caracterizan el estado medio de la atmósfera en un punto de la superficie de la tierra. El clima de una región esta controlado por una serie de elementos como la temperatura, humedad, presión, vientos y precipitaciones (INEGI, 2017b). En otras palabras, el clima es el promedio de los tiempos que se registran en una zona determinada durante un periodo de por lo menos 30 años. El tiempo se refiere a las condiciones meteorológicas (temperatura, lluvia, presión, nubosidad, etc.) en un momento del día o de la noche.

El clima de la CRT está caracterizado por dos tipos: el seco templado, que se presenta en la mayor parte de la región, desde la zona costa hasta el límite oriental, y el templado subhúmedo, que sólo se registra en las zonas más altas al noreste y sureste de la Cuenca (INEGI, 2016). De acuerdo con la clasificación de Köppen, modificada por Enriqueta García en 1964 para las condiciones de la República Mexicana, el clima predominante en la zona es de tipo seco, mediterráneo, templado, con lluvias en invierno, porcentaje de precipitación invernal mayor de 36% y verano cálido (Bske). Para las zonas más altas de la Cuenca, el clima cambia a templado subhúmedo y semifrío subhúmedo; en ambos casos, también con lluvias en invierno, claves Cs y Ces(x’), respectivamente (CONAGUA, 2015b).

Las precipitaciones tienen un régimen tipo mediterráneo debido que más del 70% de la lluvia que se registra en un año se presenta en los meses de invierno (enero-marzo). Los factores del clima como la precipitación y la temperatura se abordarán con más detalle en la Parte 2 del presente Diagnóstico.

Hidrografía
El conocimiento de las corrientes de agua, lagos y otros cuerpos de agua es un elemento central para la planeación de los recursos hídricos de una cuenca hidrográfica. Las cuencas hidrográficas además de ser unidades funcionales, ya que captan el agua de lluvia o del deshielo de la nieve, poseen corrientes de agua que están estructuradas jerárquicamente que pueden subdividirse en subcuencas, delimitadas también por un parteaguas y concentran los escurrimientos que desembocan en el curso principal del río (SEMARNAIT, 2013:8).
Las corrientes de agua en la CRT, en su mayoría temporales, tienen una orientación este-oeste para desembocar en el Océano Pacífico. El patrón que siguen estas corrientes son consecuencia de las formas que el relieve toma en los diferentes puntos de la Cuenca. Las corrientes tienen su origen en las zonas con mayor altitud (noreste y suroeste), y por gravedad continúan su trayecto hacia el mar cruzando las zonas que presentan menor resistencia, por lo que son las laderas y valles fluviales los espacios de recarga de la cuenca. En el último tramo, la corriente del Río Tijuana, desde la cortina de la presa Abelardo L. Rodríguez hasta la línea internacional, cruza la ciudad a través de un canal de concreto que permite la libre conducción del agua hasta su entrada en Estados Unidos, donde llega al mar a través de su cauce natural (ver MAPA 4).

La CRT está integrada por 12 subcuencas: tres son compartidas por ambas naciones (Río Tijuana, Lower Cottonwood-Río Alamar y Campo Creek); dos de ellas se ubican solo en Estados Unidos (Pine Valley y Upen Cottonwood); y el resto se localizan en territorio mexicano como son las subcuencas Las Palmas, Florido, Río Seco, Ciénega, Calabazas, Canoas y el Beltrán (ver MAPA 5).
En su parte media de la Cuenca, y entre Tecate y Tijuana, se encuentra la presa El Carrizo, que además de almacenar agua de su zona de aportación, almacena también la proveniente del Acueducto Río Colorado-Tijuana (ARCT), que forma parte del sistema de abastecimiento de agua potable de la ciudad de Tijuana (CONAGUA, 2015).

Los afluentes principales en Estados Unidos son Pine Valley y Cottonwood, captados por las presas Barret y Morena; las excedencias de estas obras hidráulicas se unen en la zona de Marrón Valley al drenaje intermitente de la cañada Joe Bill, conocido como Tecate en México, formando posteriormente el Río El Alamar, cuyo tramo final ha sido recubierto con concreto en años recientes (CONAGUA, 2015).

Los datos del Cuadro 4 muestran que, además de una mayor distribución de la superficie de la CRT en territorio mexicano, también lo es el aporte al escurrimiento de la Cuenca, ya que mientras que se registran 17 h³ al año en la parte norteamericana, en México escurren en promedio 78 h³ al año (CONAGUA, 2015).
CUADRO 4 Características principales del Río Tijuana

<table>
<thead>
<tr>
<th>Río</th>
<th>País</th>
<th>Escurrimiento medio superficial (hm3/año)</th>
<th>Área de la cuenca</th>
<th>Longitud del río (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tijuana</td>
<td>México</td>
<td>78</td>
<td>3,231</td>
<td>186</td>
</tr>
<tr>
<td></td>
<td>Estados Unidos</td>
<td>17</td>
<td>1,221</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>95</td>
<td>4,452</td>
<td>195</td>
</tr>
</tbody>
</table>

Fuente: Conagua, 2015.

El Río Tijuana tiene una longitud total de 195 km con un escurrimiento natural medio superficial de 78 hm3/año del lado mexicano y 17 hm3/año en Estados Unidos. El Río Tijuana está canalizado a partir de 2.5 km aguas abajo de la cortina de la presa Abelardo L. Rodríguez siguiendo un trayecto de 7 km hasta la frontera internacional, y una capacidad de conducción final de 3,820 m3/s. A 9 km aguas arriba, en la confluencia con el Arroyo Alamar, se tiene una capacidad de conducción de 2,100 m3/s, siendo su afluente más importante, el cual confluye por la margen derecha dentro de la zona urbana de la ciudad. El Arroyo Alamar está canalizado a través de 7 km y están pendientes de ejecución otros 3.3 km (CONAGUA, Gob. del Edo. de B.C., 2015), con una capacidad de conducción de 1,720 m3/s. (Gob. del Edo, de B.C., CONAGUA, 2008).

El CUADRO 5 muestra los valores de superficie de las 12 subcuencas que conforman la CRT, así como su proporción dentro de los municipios y condados.

CUADRO 5 Subcuencas que conforman la Cuenca del Río Tijuana

<table>
<thead>
<tr>
<th>No.</th>
<th>Subcuenca</th>
<th>Municipio/condado</th>
<th>Superficie (km2)</th>
<th>Total en km</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pine Valley</td>
<td>San Diego</td>
<td>254.07</td>
<td>254.07</td>
</tr>
<tr>
<td>2</td>
<td>Upper Cottonwood</td>
<td>San Diego</td>
<td>353.34</td>
<td>353.34</td>
</tr>
<tr>
<td>3</td>
<td>Lower Cottonwood – Río Alamar</td>
<td>Tijuana</td>
<td>92.43</td>
<td>350.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>San Diego</td>
<td>257.93</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Campo Creek</td>
<td>Tecate</td>
<td>154.38</td>
<td>430.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tijuana</td>
<td>20.92</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>San Diego</td>
<td>254.94</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Río Seco</td>
<td>Tecate</td>
<td>489.07</td>
<td>516.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tijuana</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>San Diego</td>
<td>27.04</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Río Tijuana</td>
<td>Tijuana</td>
<td>181.58</td>
<td>245.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>San Diego</td>
<td>64.34</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>El Florido</td>
<td>Tecate</td>
<td>107.31</td>
<td>282.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tijuana</td>
<td>175.24</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>La Ciénega</td>
<td>Tecate</td>
<td>486.34</td>
<td>513.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tijuana</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ensenada</td>
<td>26.68</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Las Palmas</td>
<td>Tecate</td>
<td>105.72</td>
<td>510.84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tijuana</td>
<td>405.11</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Las Canoas</td>
<td>Tecate</td>
<td>229.86</td>
<td>356.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ensenada</td>
<td>126.26</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Las Calabazas</td>
<td>Tecate</td>
<td>248.19</td>
<td>397.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tijuana</td>
<td>38.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ensenada</td>
<td>111.34</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>El Beltrán</td>
<td>Tecate</td>
<td>67.32</td>
<td>241.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ensenada</td>
<td>173.78</td>
<td></td>
</tr>
</tbody>
</table>

Total de la Cuenca del Río Tijuana: 4,452 km2

Fuente: EL COLEF -USEG, con información de SDSU, 2005.
Usos del suelo y vegetación

El uso del suelo es un indicador de la intensidad con la que se desarrollan las actividades productivas, o la ausencia de ellas, dentro de la Cuenca. El MAPA 6 muestra la concentración del uso urbano, el cual se presenta al oeste de la Cuenca y que corresponde a la ciudad de Tijuana en México, y Imperial Beach, en Estados Unidos. Esta zona inició su desarrollo a partir de finales del siglo XIX y ocupa el valle más amplio de la Cuenca, el valle del Río Tijuana. Por su parte otros usos intensivos se presentan en el resto de valles (Valle de las Palmas, El Testerazo en Baja California), así como en Campo y Potrero en California, destinando su uso a las actividades agrícolas como los cultivos y en menor medida la ganadería. Las zonas con una pendiente relativamente suave se presentan en las localidades de El Hongo al este de la Cuenca cuyo uso es el urbano. Los usos del suelo se fueron desarrollando en gran medida por la disponibilidad de agua, casi siempre a partir de los acuíferos, y posteriormente por las principales vías de comunicación, manteniendo la mayor parte de la superficie de la Cuenca sin uso o desarrollo aparente.

Por lo que respecta a la vegetación, la CRT se localiza en la provincia florística de California-Baja California, considerada por la organización Conservación Internacional como un hot spot de biodiversidad, por ser una de las 25 zonas con mayor diversidad biológica del mundo (Ganster, 2010). De acuerdo con Standley (1936), la flora de Baja California posee tantas peculiaridades que no es fácil relacionarla con otras partes del continente (CONABIO, s/f). Dada las características geológicas, topográficas y climatológicas de la Cuenca, existen una amplia variedad de comunidades de plantas endémicas.

El 74% de la cubierta vegetal en la CRT está formada por el matorral costero de salvia y por el chaparral, así como humedales (charcos primaverales y zonas ribereñas) y encinos y coníferas en las montañas (ver CUADRO 6). La composición de la vegetación de matorral costero consiste en una mezcla de sub-arbustos aromáticos caducifolios de 0.5 a 1.5 m. de altura, desarrollándose con algunos arbustos tanto perennifolios como caducifolios y una pequeña proporción de especies suculentas (Minnich y Vizcaíno, 1999). Las especies más comunes de este tipo de vegetación son: *Artemisia californica, Erogonium fasciculatum, Salvia munzii, S. apiana, Lotus scoparius, Viguiera lacinata, Cnerodium dumosus, Encelia californica, Rhus integrifolia, Malosma lurina, Malacothamnus fasciculatum, Ambrosia chenopodioílo, Isomeris arborea*.

CUADRO 6 Principales comunidades de vegetación en la Cuenca del Río Tijuana

<table>
<thead>
<tr>
<th>Tipo de vegetación</th>
<th>Localización y características</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marisma costera del Sur</td>
<td>Desembocadura del río, el estuario del Río Tijuana es una de las pocas marismas que existen en el sur de California y norte de Baja California</td>
</tr>
<tr>
<td>Matorral costero de salvia</td>
<td>Se localiza en laderas secas de menor elevación</td>
</tr>
<tr>
<td>Chaparral</td>
<td>Cubre el 56% de la Cuenca, se desarrolla en elevaciones superiores al matorral de salvia a partir de la mitad oriental</td>
</tr>
<tr>
<td>Bosque de enebros (Juníperos) piñoneros</td>
<td>Altitudes mayores del sureste, dominado por el piñonero de una sola hoja, el piñonero de cuatro hojas y el piñonero californiano</td>
</tr>
<tr>
<td>Bosque de pino Jeffrey</td>
<td>Partes más altas de la Cuenca que corresponde a las zonas más húmedas tanto en los extremos noreste y sureste</td>
</tr>
<tr>
<td>Bosque ripario</td>
<td>Montes de baja densidad de sicómoros americanos, aunque pueden estar entremezclados con el encino costero y el álamo</td>
</tr>
<tr>
<td>Bosque ripario de encinos</td>
<td>Con mayor frecuencia en las partes superiores de los arroyos tributarios como densos bosques de encinos costeros que ocupan el perímetro de los canales de los arroyos</td>
</tr>
<tr>
<td>Matorrales riparios</td>
<td>Vegetación común en la Cuenca y especialmente a lo largo del cauce del Río Valle de las Palmas</td>
</tr>
</tbody>
</table>

El chaparral es un tipo de vegetación que se mezcla con matorral costero particularmente en las zonas de exposición norte o bien de sombras orográficas, presentándose especies más frondosas de follaje y de mayor altura. En cuanto a la cobertura y distribución histórica, esta vegetación es la más conservada, debido a que se encuentra sobre terrenos con altas pendientes y cotas elevadas (Gobierno del Estado de Baja California, 2015).

En las zonas más altas se encuentran comunidades de bosques de pino Jeffrey, dominado por el pino de esta especie, que se desarrollan tanto en los límites noreste y sureste de la Cuenca y ocupan las zonas más húmedas de
las montañas. Otras comunidades vegetales que se pueden encontrar en esta zona es el bosque de enebros piñoneros, así como vegetación riparia sobre los cauces de arroyos y cañadas (Sdsu, 2005).

La distribución de las comunidades vegetales en la Cuenca no es aleatoria, es decir, siguen un patrón determinado por el tipo de suelos, humedad, precipitación, orientación y en general con las condiciones de microclimas que se forman en la zona. El MAPA 7 muestra la distribución de estas comunidades debido a los factores anteriores y a la altitud, de ahí se explica que los tipos de vegetación de mayor altura y de tronco más grueso se ubican en las partes más altas, donde se registra una mayor precipitación como el bosque de pino Jeffrey y el matorral de juníperos.

MAPA 7 Vegetación de la Cuenca del Río Tijuana (2005)

Las especies más representativas de las comunidades vegetales que cubren la CRT se presentan en el CUADRO 7. Al respecto sobresalen algunas especies que cuentan con algún tipo de protección o conservación por parte del gobierno mexicano, estas especies son el junípero californiano, la chilca, el piñón de cuatro hojas, el pino Jeffrey, el ciprés de Tecate y la biznaga, especies que de alguna forma han sido amenazadas por las actividades humanas.
CUADRO 7 Listado de especies de vegetación más notable en la Cuenca del Río Tijuana

<table>
<thead>
<tr>
<th>Nombre científico</th>
<th>Nombre común</th>
<th>Nombre científico</th>
<th>Nombre común</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salvia mellifera</td>
<td>Salvia negra</td>
<td>Malosma laurina</td>
<td>Zumaque de laurel</td>
</tr>
<tr>
<td>Sambucus mexicana</td>
<td>Baya azul de sauco</td>
<td>Rhua ingegrifolia</td>
<td>Bayas</td>
</tr>
<tr>
<td>Juniperus califórnica*</td>
<td>Junípero californiano</td>
<td>Artemisia douglasiana</td>
<td>Artemisa</td>
</tr>
<tr>
<td>Ceanothus spp.</td>
<td>Lila californiana</td>
<td>Baccharus salicifolia*</td>
<td>Chilca</td>
</tr>
<tr>
<td>Artemisia californiana</td>
<td>Artemisa de California</td>
<td>Patentula monophylla</td>
<td>Piñonero de una hoja</td>
</tr>
<tr>
<td>Quercus chrysolepis</td>
<td>Encino de cañones</td>
<td>Toxicodendron diversilobum</td>
<td>Roble venenoso</td>
</tr>
<tr>
<td>Adenostoma fasciculatum</td>
<td>Chamizo</td>
<td>Adenostoma sparsifolium</td>
<td>Chaparral de tallo rojo</td>
</tr>
<tr>
<td>Opuntia littoralis</td>
<td>Nopal costero del castor</td>
<td>Viguiera laciniata</td>
<td>Girasol de San Diego</td>
</tr>
<tr>
<td>Quercus agrifolia</td>
<td>Encino costero</td>
<td>Quercus berberidifolia</td>
<td>Encino</td>
</tr>
<tr>
<td>Populus fremontii</td>
<td>Álamos</td>
<td>Agave shawii</td>
<td>Maguey primavera</td>
</tr>
<tr>
<td>Ribes spp</td>
<td>Grosella y grosella espinosa</td>
<td>Urtica dioica spp holosericea</td>
<td>Ortiga</td>
</tr>
<tr>
<td>Viitis girdiana</td>
<td>Uva del desierto</td>
<td>Rhus ovata</td>
<td>Lentisco</td>
</tr>
<tr>
<td>Eriogonum fasciculatum</td>
<td>Alforfón</td>
<td>Tamarix spp</td>
<td>Tamarisco</td>
</tr>
<tr>
<td>Pinus quadrifolia*</td>
<td>Piñones de cuatro hojas</td>
<td>Bergerocactus emoryi</td>
<td>Cactus terciopelo</td>
</tr>
<tr>
<td>Arundo donax</td>
<td>Carrizo</td>
<td>Plantanus racemosa</td>
<td>Sicómoros americanos</td>
</tr>
<tr>
<td>Rhamnus illicifolia</td>
<td>Baya roja</td>
<td>Salvia apiana</td>
<td>Salvia blanca</td>
</tr>
<tr>
<td>Pinus Jeffreyi*</td>
<td>Pino Jeffrey</td>
<td>Salix spp.</td>
<td>Sauce</td>
</tr>
<tr>
<td>Cupressus forbesin*</td>
<td>Ciprés de Tecate</td>
<td>Ferocactus viridescens**</td>
<td>Biznaga</td>
</tr>
</tbody>
</table>

Fauna

La fauna en la CRT está compuesta por especies de la Provincia Faunística Sandieguense que se refiere a aquellos animales que se originaron y viven en California y Baja California. Entre las principales especies se encuentran algunos mamíferos pequeños como ratas y ratones de campo. Sobre la meseta entre la subcuenca Los Laureles y el Cañón del Matadero en Tijuana se reporta la presencia del ratón canguro (*Dipodomys spp.*), por lo que no se duda de su presencia en el área de interés debido a la cercanía de los hábitats. Entre mamíferos de talla mediana y grande se encuentran liebres, conejos, venado bura y cacomixtle.

Con respecto a la avifauna, se detecta la presencia del halcón cola roja de Socorro (*Buteo jamaicensis*) y el halcón peregrino (*Falco peregrinus*) las cuales se encuentran sujetas a protección especial de acuerdo a la NOM-059-ECOL-2010. También existe la presencia de codornices (*Callipepla californica*); cuervos (*Corvus corax*); correccamino (*Geococcyx californianus*); colibríes (*Calypte anna* y *Selasphorus spp.*). En la parte costera es común observar pelícanos (*Pelecanus occidentalis*) así como gaviotas (*Larus hermanni*), entre otras especies. El CUADRO 8 muestra las principales especies de fauna que se han registrado en la CRT.
CUADRO 8 Especies de fauna presentes en la Cuenca del Río Tijuana

<table>
<thead>
<tr>
<th>Mamíferos</th>
<th>Nombre científico</th>
<th>Nombre común</th>
<th>Avifauna</th>
<th>Nombre científico</th>
<th>Nombre común</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notiosorex crawfordi</td>
<td>Musaraña desértica norteña</td>
<td>Oxyura jamaicensis</td>
<td>Pato chiquito</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sorex ornatus</td>
<td>Musaraña adornada</td>
<td>Buteo jamaicensis</td>
<td>Halcón cola roja</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neotoma lepida</td>
<td>Rata cambalechera desértica</td>
<td>Falco sparverius</td>
<td>Halconcillo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peromyscus</td>
<td>Ratón californiano</td>
<td>Callipepla californica</td>
<td>Codorniz de California</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dipodomys merriami</td>
<td>Rata-canguro de Merriam</td>
<td>Oreorfyx pictus</td>
<td>Codorniz de montaña</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sylvilagus spp.</td>
<td>Conejo</td>
<td>Zenaida macroura</td>
<td>Huilota</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepus spp.</td>
<td>Liebre</td>
<td>Geococcyx californianus</td>
<td>Correcaminos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepus californicus</td>
<td>Liebre de California</td>
<td>Melanerpes formicivorus</td>
<td>Carpintero encinero</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vulpes sp.</td>
<td>Zorro</td>
<td>Colaptes auratus</td>
<td>Carpintero de alas rojas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mephitis spp.</td>
<td>Zorrillos</td>
<td>Contopus sordidulus</td>
<td>Mosquero occidental</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canis latrans</td>
<td>Coyote</td>
<td>Eremophila alpestris</td>
<td>Alondra cornuda</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linx rufus</td>
<td>Gato montés</td>
<td>Aphelocoma coerulescens</td>
<td>Arrendajo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odocoileus hemionus</td>
<td>Venado bura</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bassariscus astutus</td>
<td>Cacomixtle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reptiles y anfibios

<table>
<thead>
<tr>
<th>Nombre científico</th>
<th>Nombre común</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batrachoseps pacificus</td>
<td>Salamandra del Pacífico</td>
</tr>
<tr>
<td>Phrynosoma coronatum</td>
<td>Camaleón</td>
</tr>
<tr>
<td>Bufo boreas</td>
<td>Sapo del oeste</td>
</tr>
<tr>
<td>Hyla cadaverina</td>
<td>Rana de California</td>
</tr>
<tr>
<td>Scaphiopus hammondii</td>
<td>Rana</td>
</tr>
<tr>
<td>Lichanura trivirgata</td>
<td>Boa rosada</td>
</tr>
<tr>
<td>Masticophis flagelum</td>
<td>Culebra látingo de California</td>
</tr>
<tr>
<td>Lampropeltis getula</td>
<td>Serpiente rey común</td>
</tr>
<tr>
<td>Crotalus ruber y C. viridis</td>
<td>Serpiente de cascabel</td>
</tr>
</tbody>
</table>

FUENTE: Elaboración propia con información de Gobierno del Estado de Baja California, 2015, y García, 2002.
1.2 LA COMPOSICIÓN Y DISTRIBUCIÓN DE LA POBLACIÓN

Población total

Los primeros pobladores de la Crt impactaron su ambiente por las actividades desarrolladas con el uso del fuego y la recolección de especies de flora y fauna, sin embargo, parecen haber estado en un equilibrio dinámico por más de un milenio (Blackburn y Anderson, 1993 en Ojeda y Espejel, 2008; 521). El primer grupo indígena que habitó en la zona fueron los *kumiai*, las evidencias sugieren su presencia en el valle del Río Tijuana en tiempos de la llegada de los españoles (Shipek, 1969, 1993 en Ojeda y Espejel, 2008). Hoy en día la población de la Crt se encuentra concentrada en la parte occidental de las ciudades de Tijuana y Tecate, como en partes de las comunidades de San Diego que incluyen a Imperial Beach, San Ysidro y Otay Mesa. El *CUADRO 9* presenta el número de población por municipio, condado dentro de la Cuenca.

CUADRO 9 Población total de la Cuenca del Río Tijuana (2010)

<table>
<thead>
<tr>
<th>País</th>
<th>Estado/Municipio/condado</th>
<th>Nivel</th>
<th>Población urbana</th>
<th>Población rural</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>México</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baja California</td>
<td>Estado</td>
<td>2,911,874</td>
<td>243,196</td>
<td>3,155,070</td>
<td></td>
</tr>
<tr>
<td>Tijuana</td>
<td>Municipio</td>
<td>1,519,454</td>
<td>40,229</td>
<td>1,559,683</td>
<td></td>
</tr>
<tr>
<td>Tecate</td>
<td>Municipio</td>
<td>80,077</td>
<td>21,002</td>
<td>101,079</td>
<td></td>
</tr>
<tr>
<td>Ensenada</td>
<td>Municipio</td>
<td>398,122</td>
<td>68,673</td>
<td>466,795</td>
<td></td>
</tr>
<tr>
<td>Estados Unidos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>California</td>
<td>Estado</td>
<td>35,373,606</td>
<td>1,880,350</td>
<td>37,253,956</td>
<td></td>
</tr>
<tr>
<td>San Diego</td>
<td>Condado</td>
<td>2,993,259</td>
<td>102,054</td>
<td>3,095,313</td>
<td></td>
</tr>
<tr>
<td>Parte estadounidense</td>
<td>Cuenca</td>
<td>n/d</td>
<td>n/d</td>
<td>126,985</td>
<td></td>
</tr>
</tbody>
</table>

De acuerdo con el Censo General de Población y Vivienda del INEGI y el U.S. Census Bureau para ese año, la Crt contaba con una población total de 1,679,145 habitantes, donde el 92.4% se localiza en el lado mexicano y el resto (7.6 %) se ubicaban en parte del condado de San Diego. De las localidades urbanas, la ciudad de Tijuana encabeza la lista con 1,300,983 personas, a continuación, se encuentra Tecate con 64,764; El Refugio con 36,400; Terrazas del Valle con 20,421; Villas del Prado Segunda Sección con 18,226 habitantes, éstas últimas en el municipio de Tijuana.

Los poblados pequeños se encuentran hacia la zona Este de la Cuenca, en las comunidades: Nueva Colonia Hindú, Valle de Las Palmas, Carmen Serdán, Vallecitos, Santa Verónica, Nejí y El Hongo, todas ellas en el municipio de
Las características de la población que vive en la CRT, a ambos lados de la frontera, son un elemento importante para estudiar las condiciones sociodemográficas en las cuales se realizan los distintos usos de los recursos hídricos. De esta forma el índice de masculinidad muestra la relación que existe entre el número de hombres y el número de mujeres en una localidad. De manera general, son las poblaciones urbanas de Tijuana, en el lado mexicano, que muestran un mayor índice de masculinidad respecto a las localidades rurales, por lo que existe una mayor proporción de mujeres respecto a hombres en las ciudades. Por su parte, el porcentaje de adultos mayores se mantiene relativamente homogéneo entre localidades urbanas y rurales, quizás con un ligero incremento en las localidades rurales, como lo demuestra el Ejido Morelos donde los adultos mayores son el 30% de la población. Un tercer elemento a considerar es la población que declaró no ser nacida en el estado de Baja California al momento de la entrevista del censo de...
2010, donde cerca de la mitad nació en otra entidad federativa. El CUADRO 10 presenta los valores de las principales características de la población del municipio de Tijuana dentro de la Cuenca.

<table>
<thead>
<tr>
<th>CUADRO 10 Algunas características demográficas de la población del municipio de Tijuana en la Cuenca del Río Tijuana (2010)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Localidad</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Tijuana</td>
</tr>
<tr>
<td>El Refugio</td>
</tr>
<tr>
<td>Terrazas del Valle</td>
</tr>
<tr>
<td>Villa del Prado (2ª)</td>
</tr>
<tr>
<td>Las Delicias</td>
</tr>
<tr>
<td>Villa del Campo</td>
</tr>
<tr>
<td>El Niño</td>
</tr>
<tr>
<td>San Luis</td>
</tr>
<tr>
<td>Maclovio Rojas</td>
</tr>
<tr>
<td>Parajes del Valle</td>
</tr>
<tr>
<td>Lomas del Valle</td>
</tr>
<tr>
<td>Ejido Javier Rojo</td>
</tr>
<tr>
<td>Urbanas</td>
</tr>
<tr>
<td>Población infantil</td>
</tr>
<tr>
<td>Adultos mayores</td>
</tr>
<tr>
<td>Nacidos en otra entidad</td>
</tr>
<tr>
<td>Tasa de dependencia</td>
</tr>
<tr>
<td>Rurales</td>
</tr>
<tr>
<td>Hda. los Venados</td>
</tr>
<tr>
<td>Buenos Aires</td>
</tr>
<tr>
<td>Ejido Ojo de Agua</td>
</tr>
<tr>
<td>Lomas de Tlatelolco</td>
</tr>
<tr>
<td>Lomas del Pedregal</td>
</tr>
<tr>
<td>Tres M (Pérez)</td>
</tr>
<tr>
<td>Nuevo Progreso</td>
</tr>
<tr>
<td>Partido del Trabajo</td>
</tr>
<tr>
<td>Los Girasoles</td>
</tr>
<tr>
<td>Ampliación Ejido Lázaro Cárdenas</td>
</tr>
<tr>
<td>Batalla Nacional</td>
</tr>
<tr>
<td>Valle Bonito</td>
</tr>
<tr>
<td>Genaro Vázquez (3ª)</td>
</tr>
<tr>
<td>Colinas del Florido</td>
</tr>
<tr>
<td>Casa Blanca (Ulloa)</td>
</tr>
<tr>
<td>La Esperanza</td>
</tr>
<tr>
<td>Florido Viejo</td>
</tr>
<tr>
<td>Villa del Álamo</td>
</tr>
<tr>
<td>El Nevado</td>
</tr>
<tr>
<td>Ojo de Agua</td>
</tr>
<tr>
<td>Santa Fe</td>
</tr>
<tr>
<td>El Roble Tres R</td>
</tr>
<tr>
<td>Cañada Verde</td>
</tr>
<tr>
<td>El Chicote</td>
</tr>
<tr>
<td>Colinas del Trabajo</td>
</tr>
<tr>
<td>Ejido Carmen Serdán</td>
</tr>
<tr>
<td>Santa Fe</td>
</tr>
<tr>
<td>Ampl. Tlatelolco</td>
</tr>
<tr>
<td>El Refugio</td>
</tr>
<tr>
<td>Buenos Aires</td>
</tr>
<tr>
<td>Los Olivos</td>
</tr>
<tr>
<td>Piedras Blancas</td>
</tr>
<tr>
<td>Rancho Ayala</td>
</tr>
<tr>
<td>El Platanal</td>
</tr>
<tr>
<td>El Moro</td>
</tr>
<tr>
<td>El Carricito</td>
</tr>
</tbody>
</table>
Por lo que corresponde a las localidades del municipio de Tecate que se encuentran dentro de la CRT, el índice de masculinidad muestra una mayor proporción de hombres respecto a las mujeres en las localidades urbanas, un caso particular lo representa el CERESO de El Hongo, por tratarse de un centro de readaptación social donde la gran mayoría de los residentes son hombres. Respecto a la proporción de adultos mayores, las localidades rurales muestran valores más altos que con respecto a las urbanas. Finalmente, los nacidos en otra entidad federativa presentan mayores valores en las localidades rurales. El CUADRO 11 presenta estas y otras variables demográficas de la población de Tecate.

CUADRO 11 Algunas características demográficas de la población del municipio de Tecate en la Cuenca del Río Tijuana (2010)

<table>
<thead>
<tr>
<th>Localidad</th>
<th>Población total</th>
<th>Índice de masculinidad</th>
<th>Población infantil</th>
<th>Adultos mayores</th>
<th>Nacidos en otra entidad</th>
<th>Tasa de dependencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urbanas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tecate</td>
<td>64,764</td>
<td>101</td>
<td>28.6%</td>
<td>5.0%</td>
<td>43.1%</td>
<td>51.2%</td>
</tr>
<tr>
<td>Lomas de Sta. Anita</td>
<td>6,604</td>
<td>99</td>
<td>35.6%</td>
<td>1.5%</td>
<td>46.9%</td>
<td>59.3%</td>
</tr>
<tr>
<td>Nva. Colonia Hindu</td>
<td>4,431</td>
<td>109</td>
<td>35.7%</td>
<td>4.0%</td>
<td>45.3%</td>
<td>66.8%</td>
</tr>
<tr>
<td>Cereso El Hongo</td>
<td>4,278</td>
<td>42,680</td>
<td>0.0%</td>
<td>0.8%</td>
<td>1.1%</td>
<td>0.8%</td>
</tr>
<tr>
<td>Rurales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>El Hongo</td>
<td>2,411</td>
<td>108</td>
<td>29.9%</td>
<td>7.5%</td>
<td>45.3%</td>
<td>61.1%</td>
</tr>
<tr>
<td>Hacienda Tecate</td>
<td>1,871</td>
<td>96</td>
<td>37.8%</td>
<td>0.5%</td>
<td>51.6%</td>
<td>62.0%</td>
</tr>
<tr>
<td>Valle de las Palmas</td>
<td>1,860</td>
<td>102</td>
<td>29.0%</td>
<td>7.4%</td>
<td>38.5%</td>
<td>57.4%</td>
</tr>
<tr>
<td>Colonia Aviación</td>
<td>1,219</td>
<td>102</td>
<td>31.3%</td>
<td>5.2%</td>
<td>47.2%</td>
<td>57.5%</td>
</tr>
<tr>
<td>Alfonso Garzón</td>
<td>1,188</td>
<td>103</td>
<td>34.8%</td>
<td>3.2%</td>
<td>44.8%</td>
<td>61.6%</td>
</tr>
<tr>
<td>El Mirador</td>
<td>1,171</td>
<td>104</td>
<td>35.6%</td>
<td>2.5%</td>
<td>57.6%</td>
<td>61.5%</td>
</tr>
<tr>
<td>Sierra Tecate</td>
<td>585</td>
<td>102</td>
<td>37.6%</td>
<td>2.2%</td>
<td>53.2%</td>
<td>66.2%</td>
</tr>
<tr>
<td>Chula Vista</td>
<td>494</td>
<td>115</td>
<td>30.8%</td>
<td>7.5%</td>
<td>41.9%</td>
<td>62.0%</td>
</tr>
<tr>
<td>El Escorial</td>
<td>470</td>
<td>103</td>
<td>42.6%</td>
<td>1.7%</td>
<td>60.2%</td>
<td>79.4%</td>
</tr>
<tr>
<td>El Testerazo</td>
<td>446</td>
<td>102</td>
<td>28.7%</td>
<td>7.0%</td>
<td>40.1%</td>
<td>57.2%</td>
</tr>
<tr>
<td>Libertad</td>
<td>357</td>
<td>113</td>
<td>30.5%</td>
<td>4.5%</td>
<td>56.0%</td>
<td>53.9%</td>
</tr>
<tr>
<td>San José</td>
<td>348</td>
<td>116</td>
<td>37.1%</td>
<td>4.0%</td>
<td>50.3%</td>
<td>70.1%</td>
</tr>
<tr>
<td>Lomita del Cuchumá</td>
<td>302</td>
<td>113</td>
<td>39.7%</td>
<td>4.0%</td>
<td>38.1%</td>
<td>77.6%</td>
</tr>
<tr>
<td>Paso del Águila</td>
<td>292</td>
<td>110</td>
<td>31.5%</td>
<td>1.4%</td>
<td>46.6%</td>
<td>49.0%</td>
</tr>
<tr>
<td>Ampliación Valle de las Palmas</td>
<td>281</td>
<td>111</td>
<td>37.0%</td>
<td>2.1%</td>
<td>35.6%</td>
<td>64.3%</td>
</tr>
<tr>
<td>Gral. Felipe Ángeles</td>
<td>273</td>
<td>113</td>
<td>33.3%</td>
<td>9.9%</td>
<td>38.1%</td>
<td>76.1%</td>
</tr>
<tr>
<td>Ejido Encinal</td>
<td>258</td>
<td>115</td>
<td>31.4%</td>
<td>5.8%</td>
<td>45.3%</td>
<td>59.3%</td>
</tr>
<tr>
<td>Jardines del Rincón</td>
<td>220</td>
<td>116</td>
<td>25.5%</td>
<td>13.2%</td>
<td>53.2%</td>
<td>63.0%</td>
</tr>
<tr>
<td>San José</td>
<td>175</td>
<td>97</td>
<td>29.7%</td>
<td>6.3%</td>
<td>45.1%</td>
<td>57.8%</td>
</tr>
<tr>
<td>Villas Campestre</td>
<td>168</td>
<td>73</td>
<td>25.0%</td>
<td>4.8%</td>
<td>53.6%</td>
<td>44.6%</td>
</tr>
<tr>
<td>Rancho Ramos</td>
<td>130</td>
<td>86</td>
<td>41.5%</td>
<td>2.3%</td>
<td>56.9%</td>
<td>78.1%</td>
</tr>
<tr>
<td>El Cápiro</td>
<td>120</td>
<td>107</td>
<td>25.8%</td>
<td>3.3%</td>
<td>50.0%</td>
<td>41.2%</td>
</tr>
<tr>
<td>Resto de las localidades</td>
<td>556</td>
<td>87</td>
<td>31.8%</td>
<td>6.7%</td>
<td>54.0%</td>
<td>64.3%</td>
</tr>
<tr>
<td>Total</td>
<td>95,272</td>
<td>90</td>
<td>28.9%</td>
<td>4.5%</td>
<td>42.2%</td>
<td>50.6%</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con datos de INEGI, información del Censo del 2010 con revisión en el 2016.
La población asentada en la parte estadounidense de la CRT mantiene características significativamente diferentes a su contraparte mexicana. Este es el caso de la población de adultos mayores, donde el porcentaje asciende a 9.5%, mientras que en la parte mexicana es de 4.5% para Tecate y 4.0% para Tijuana. Esto puede estar relacionado a la forma en que se clasifica a este grupo de población, pero indica grandes diferencias a ambos lados de la Cuenca. Un elemento que resalta, y por obvias razones, es la proporción de la población hispana o latina que vive en la parte norteamericana, donde el 62.7% de los residentes corresponde a este grupo social, y de éste porcentaje, el 58.7% son de ascendencia mexicana, lo que se explica por su cercanía con localidades mexicanas al sur de la frontera de Estados Unidos. Un elemento a destacar es la proporción de población infantil, ya que en la parte norteamericana esta proporción llega al 21%, mientras que en Tecate y Tijuana llega a 29% en ambos municipios (ver CUADRO 12).

CUADRO 12 Algunas características demográficas de la población del condado de San Diego en la Cuenca del Río Tijuana (2010)

<table>
<thead>
<tr>
<th>Subdivisión del condado</th>
<th>Census Track</th>
<th>Población total</th>
<th>Población infantil</th>
<th>Adultos mayores</th>
<th>Hispano o latino</th>
<th>De origen mexicano</th>
<th>Tasa de dependencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jamul</td>
<td>213.02</td>
<td>7,361</td>
<td>9.5%</td>
<td>8.7%</td>
<td>34.4%</td>
<td>27.7%</td>
<td>22.2%</td>
</tr>
<tr>
<td>Laguna-Pine Valley</td>
<td>212.02</td>
<td>3,156</td>
<td>16.3%</td>
<td>11.9%</td>
<td>17.5%</td>
<td>12.2%</td>
<td>39.4%</td>
</tr>
<tr>
<td>Mt. Empire</td>
<td>209.02</td>
<td>2,122</td>
<td>13.5%</td>
<td>14.3%</td>
<td>10.2%</td>
<td>8.3%</td>
<td>38.5%</td>
</tr>
<tr>
<td>Imperial Beach</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td></td>
<td>6,800</td>
<td>15.8%</td>
<td>10.1%</td>
<td>33.7%</td>
<td>28.7%</td>
<td>35.1%</td>
</tr>
<tr>
<td>103</td>
<td></td>
<td>4,507</td>
<td>20.6%</td>
<td>12.6%</td>
<td>46.9%</td>
<td>43.6%</td>
<td>49.6%</td>
</tr>
<tr>
<td>104.01</td>
<td></td>
<td>2,458</td>
<td>24.1%</td>
<td>6.6%</td>
<td>62.6%</td>
<td>58.0%</td>
<td>44.2%</td>
</tr>
<tr>
<td>104.02</td>
<td></td>
<td>5,558</td>
<td>23.5%</td>
<td>7.1%</td>
<td>58.0%</td>
<td>53.7%</td>
<td>44.1%</td>
</tr>
<tr>
<td>100.05</td>
<td></td>
<td>7,366</td>
<td>23.6%</td>
<td>12.4%</td>
<td>92.1%</td>
<td>88.3%</td>
<td>56.3%</td>
</tr>
<tr>
<td>100.12</td>
<td></td>
<td>4,581</td>
<td>25.9%</td>
<td>7.8%</td>
<td>94.8%</td>
<td>91.1%</td>
<td>50.8%</td>
</tr>
<tr>
<td>101.10</td>
<td></td>
<td>7,298</td>
<td>23.3%</td>
<td>10.5%</td>
<td>63.5%</td>
<td>60.6%</td>
<td>51.2%</td>
</tr>
<tr>
<td>101.11</td>
<td></td>
<td>3,072</td>
<td>25.0%</td>
<td>8.7%</td>
<td>90.5%</td>
<td>88.0%</td>
<td>50.7%</td>
</tr>
<tr>
<td>101.06</td>
<td></td>
<td>5,200</td>
<td>21.7%</td>
<td>10.5%</td>
<td>86.9%</td>
<td>83.8%</td>
<td>47.4%</td>
</tr>
<tr>
<td>100.04</td>
<td></td>
<td>4,679</td>
<td>19.3%</td>
<td>13.9%</td>
<td>76.6%</td>
<td>73.6%</td>
<td>49.8%</td>
</tr>
<tr>
<td>100.03</td>
<td></td>
<td>5,906</td>
<td>19.4%</td>
<td>15.9%</td>
<td>64.7%</td>
<td>62.2%</td>
<td>54.6%</td>
</tr>
<tr>
<td>101.04</td>
<td></td>
<td>3,217</td>
<td>17.6%</td>
<td>15.5%</td>
<td>46.9%</td>
<td>43.6%</td>
<td>49.4%</td>
</tr>
<tr>
<td>100.13</td>
<td></td>
<td>5,484</td>
<td>24.6%</td>
<td>10.7%</td>
<td>97.3%</td>
<td>93.9%</td>
<td>54.5%</td>
</tr>
<tr>
<td>101.12</td>
<td></td>
<td>4,764</td>
<td>27.4%</td>
<td>5.0%</td>
<td>83.0%</td>
<td>79.7%</td>
<td>47.9%</td>
</tr>
<tr>
<td>100.01</td>
<td></td>
<td>4,097</td>
<td>19.5%</td>
<td>13.9%</td>
<td>62.8%</td>
<td>59.6%</td>
<td>50.0%</td>
</tr>
<tr>
<td>100.14</td>
<td></td>
<td>17,679</td>
<td>19.5%</td>
<td>3.7%</td>
<td>50.6%</td>
<td>44.8%</td>
<td>30.2%</td>
</tr>
<tr>
<td>100.09</td>
<td></td>
<td>6,693</td>
<td>27.2%</td>
<td>5.7%</td>
<td>91.0%</td>
<td>86.9%</td>
<td>49.0%</td>
</tr>
<tr>
<td>101.09</td>
<td></td>
<td>4,595</td>
<td>22.0%</td>
<td>8.4%</td>
<td>71.2%</td>
<td>68.2%</td>
<td>43.7%</td>
</tr>
<tr>
<td>100.15</td>
<td></td>
<td>2,803</td>
<td>27.8%</td>
<td>6.1%</td>
<td>82.9%</td>
<td>78.1%</td>
<td>51.2%</td>
</tr>
<tr>
<td>Parte de Estados Unidos</td>
<td></td>
<td>126,985</td>
<td>20.9%</td>
<td>9.5%</td>
<td>62.7%</td>
<td>58.7%</td>
<td>43.7%</td>
</tr>
</tbody>
</table>

FUENTE: Elaboración propia con datos del U.S. Census Bureau, Census Track, 2010.

Densidad de población

La densidad de población, entendida como la distribución de la población total sobre el territorio, demuestra cómo la población en la CRT hace uso del territorio en el que se desarrolla. La concentración de la población se hace más evidente en los centros urbanos como Tijuana, Tecate y San Diego que con respecto a otras localidades. La distribución de la población dentro de la Cuenca es irregular, ya que la población se concentra en el extremo poniente de la misma, al estar ocupada por las ciudades ya mencionadas.
En la CRT se presenta una densidad de población de 377 habitantes por km². Tijuana es el municipio más densamente poblado en la Cuenca con 1,594 habitantes por km², esto representa casi 15 veces más que la densidad de San Diego, California, asentada en la Cuenca. El CUADRO 13 muestra los valores de la densidad de población por municipio y condado dentro de la Cuenca.

<table>
<thead>
<tr>
<th>País</th>
<th>Municipio/condado</th>
<th>Superficie (km²)</th>
<th>Población 2010</th>
<th>Densidad de población (hab/km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>México</td>
<td>Tijuana</td>
<td>914</td>
<td>1,456,859</td>
<td>1,593.94</td>
</tr>
<tr>
<td></td>
<td>Tecate</td>
<td>1,888</td>
<td>95,272</td>
<td>50.46</td>
</tr>
<tr>
<td></td>
<td>Ensenada</td>
<td>438</td>
<td>29</td>
<td>0.07</td>
</tr>
<tr>
<td>Estados Unidos</td>
<td>San Diego</td>
<td>1,212</td>
<td>126,985</td>
<td>104.77</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>4,452</td>
<td>1,679,145</td>
<td>377.35</td>
</tr>
</tbody>
</table>

CUADRO 13 Densidad de población en la Cuenca del Río Tijuana por municipio y condado (2010)

FUENTE: Elaboración propia con datos de INEGI, 2010 y Census Track, 2010.

Población indígena

La población indígena representa un menor porcentaje dentro de la CRT. El grupo indígena con mayor presencia pertenece al grupo kumiai y se encuentran en ambos lados de la frontera (Wright, 2005). En el lado estadounidense la reserva indígena de Campo, ubicada justo al norte de la frontera internacional en el sureste de San Diego, abarca alrededor de 65 km² y cuenta con dos secciones desconectadas con unos 365 habitantes. En la parte baja también hay reservas La Posta, Manzanita y Cuyapaípe (Wilken, 2005).

Por lo que corresponde a la parte mexicana de la Cuenca, existe el riesgo de pérdida de la lengua materna y muchas prácticas culturales de los *kumiai*. Sin embargo, éstas han sido mantenidas, según INEGI (2015) existen 486 hablantes de esta lengua indígena distribuidos en el municipio de Tecate en localidades como Juntas de Nejí, donde existe el grupo indígena más representativo. La relevancia de esta etnia radica en los fuertes lazos familiares y lingüísticos con los grupos *kumiai* (o Tipai) al sur del condado de San Diego, California, tales como Campo y Jamul. La mayoría de los pobladores de Nejí se han mudado a la ciudad de Tecate, Valle de Las Palmas, El Testerazo y El Hongo en busca de empleo. Los habitantes se dedican a la agricultura y a la cría de ganado. Los problemas que enfrentan en sus localidades de origen son la escasez de agua, la erosión de sus tierras, pérdida de espacios de pastoreo, destrucción de sitios arqueológicos, mala calidad de caminos de acceso, dificultades para comprobar la tenencia de la tierra e invasiones de ejidos vecinos (IMPLAN-Tijuana, 2015).

Crecimiento poblacional

Por su situación fronteriza entre México y Estados Unidos, la CRT está sujeta a recibir importantes flujos migratorios provenientes del sur de México, Estados Unidos y, en los últimos años, de otros países, cuyo objetivo de asentarse
en Tijuana debido a su importante actividad económica. Esta situación se ve reflejada en que casi el 50% de la población actual de la Cuenca, en el lado mexicano, nació en otra entidad federativa distinta a Baja California.

La población de la CRT es dinámica, ya que su crecimiento demográfico llegará a casi los 2 millones de habitantes en el año 2020. La rápida urbanización y el crecimiento industrial en el área de San Diego, Tijuana y Tecate continuarán extendiéndose hacia el sur y hacia el este. De acuerdo con El Departamento de Finanzas del Estado de California, se estima que la población del condado de San Diego se incrementará de 3,244,706 habitantes en el 2015 a 3,589,951 en el 2030. En la parte mexicana, de acuerdo con el Consejo Nacional de Población (CONAPO) señala que Tijuana para ese mismo año tendrá 1,991,420 habitantes y Tecate 129,059 habitantes.

A nivel localidad, la ciudad de Tijuana seguirá encabezando la lista con el mayor número de habitantes dentro de la Cuenca (ver CUADRO 14). De acuerdo con las estadísticas para el 2030 ésta tendrá 1,502,746 habitantes, lo que significa 780,600 más de lo que tuvo en el 2000. Para el caso estadounidense, el CUADRO 15 presenta las proyecciones de población de las jurisdicciones del condado de San Diego en la Cuenca del Río Tijuana. Finalmente, el CUADRO 16 muestra las proyecciones para e total del condado de San Diego, California.

CUADRO 14 Proyecciones de población de principales localidades mexicanas en la Cuenca del Río Tijuana (2020-2030)

<table>
<thead>
<tr>
<th>Municipio</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tijuana</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tijuana</td>
<td>1,454,365</td>
<td>1,489,505</td>
<td>1,502,746</td>
</tr>
<tr>
<td>San Luis</td>
<td>13,139</td>
<td>15,758</td>
<td>18,617</td>
</tr>
<tr>
<td>Las Delicias</td>
<td>18,895</td>
<td>20,217</td>
<td>21,309</td>
</tr>
<tr>
<td>Maclovio Rojas</td>
<td>8,273</td>
<td>8,543</td>
<td>8,690</td>
</tr>
<tr>
<td>Buenos Aires</td>
<td>2,788</td>
<td>3,398</td>
<td>4,079</td>
</tr>
<tr>
<td>Hacienda los Venados</td>
<td>2,557</td>
<td>2,736</td>
<td>2,884</td>
</tr>
<tr>
<td>Terrazas del Valle</td>
<td>24,322</td>
<td>25,712</td>
<td>26,776</td>
</tr>
<tr>
<td>Parajes del Valle</td>
<td>4,386</td>
<td>4,693</td>
<td>4,947</td>
</tr>
<tr>
<td>Ejido Javier Rojo Gómez</td>
<td>3,795</td>
<td>4,615</td>
<td>5,528</td>
</tr>
<tr>
<td>El Niño</td>
<td>16,380</td>
<td>21,407</td>
<td>27,559</td>
</tr>
<tr>
<td>Lomas del Valle</td>
<td>3,291</td>
<td>3,159</td>
<td>2,987</td>
</tr>
<tr>
<td>El Refugio</td>
<td>66,256</td>
<td>86,588</td>
<td>111,471</td>
</tr>
<tr>
<td>Villa del Prado 2da Sección</td>
<td>22,238</td>
<td>23,794</td>
<td>25,079</td>
</tr>
<tr>
<td>Villa del Campo</td>
<td>16,967</td>
<td>18,154</td>
<td>19,335</td>
</tr>
<tr>
<td>Subtotal Tijuana</td>
<td>1,657,652</td>
<td>1,728,279</td>
<td>1,781,807</td>
</tr>
<tr>
<td>Tecate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tecate</td>
<td>70,862</td>
<td>71,678</td>
<td>71,443</td>
</tr>
<tr>
<td>Luis Echeverría Álvarez (El Hongo)</td>
<td>2,558</td>
<td>2,549</td>
<td>2,502</td>
</tr>
<tr>
<td>Nueva Colonia Hindú</td>
<td>4,914</td>
<td>5,004</td>
<td>5,021</td>
</tr>
<tr>
<td>Maclovio Herrera (Col. Aviación)</td>
<td>1,944</td>
<td>2,375</td>
<td>2,858</td>
</tr>
<tr>
<td>Alfonso Garzón (Granjas Familiares)</td>
<td>1,895</td>
<td>2,314</td>
<td>2,785</td>
</tr>
<tr>
<td>CERESO del Hongo</td>
<td>6,824</td>
<td>8,334</td>
<td>10,030</td>
</tr>
<tr>
<td>El Mirador</td>
<td>1,868</td>
<td>2,281</td>
<td>2,746</td>
</tr>
<tr>
<td>Lomas de Santa Anita</td>
<td>5,553</td>
<td>4,925</td>
<td>4,303</td>
</tr>
<tr>
<td>Hacienda Tecate</td>
<td>2,985</td>
<td>3,645</td>
<td>4,387</td>
</tr>
<tr>
<td>Subtotal Tecate</td>
<td>99,403</td>
<td>103,105</td>
<td>106,075</td>
</tr>
<tr>
<td>Total cuenca mexicana</td>
<td>1,757,055</td>
<td>1,831,384</td>
<td>1,887,882</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia con datos de CONAPO, s/f, Proyecciones de población.
CUADRO 15 Proyecciones de población de las jurisdicciones del condado de San Diego en la Cuenca del Río Tijuana (2000-2050)

<table>
<thead>
<tr>
<th>County</th>
<th>2000</th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
<th>Tasa de crecimiento 2000-2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imperial Beach</td>
<td>26,992</td>
<td>28,233</td>
<td>30,216</td>
<td>33,131</td>
<td>36,125</td>
<td>23%</td>
</tr>
<tr>
<td>Chula Vista</td>
<td>173,556</td>
<td>267,418</td>
<td>288,978</td>
<td>316,467</td>
<td>330,049</td>
<td>82%</td>
</tr>
<tr>
<td>Total</td>
<td>200,548</td>
<td>295,651</td>
<td>319,194</td>
<td>349,598</td>
<td>366,174</td>
<td>--</td>
</tr>
</tbody>
</table>

CUADRO 16 Proyecciones de población del condado de San Diego (2020-2060)

<table>
<thead>
<tr>
<th>Condado</th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
<th>2060</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Diego</td>
<td>3,398,672</td>
<td>3,631,155</td>
<td>3,822,756</td>
<td>3,989,654</td>
<td>4,129,358</td>
</tr>
</tbody>
</table>

Fuente: Demographic Research Unit, California Department of Finance, January 2018, en http://www.dof.ca.gov/Forecasting/Demographics/Projections/, consultado el 1 de marzo de 2018.

De esta forma, resulta importante considerar la nueva situación demográfica de la CdT para los próximos años con la finalidad de establecer mecanismos que permitan hacer un uso más eficiente, racional y ambientalmente amigable para conservar los recursos naturales de la Cuenca. De igual forma, es importante considerar que no solo el aumento poblacional es un desafío para el uso de los recursos naturales de la Cuenca, sino que en un contexto de cambio climático resulta ineludible considerar que muy probablemente se experimenten eventos de sequía más prolongados.

1.3 EL MARCO SOCIAL DE LA PROBLEMÁTICA AMBIENTAL

Organizaciones de la Sociedad Civil

Las relaciones entre ambiente y desarrollo han sido debatidas por décadas, en el caso de la frontera entre México y Estados Unidos ha desarrollado un modelo de crecimiento donde la protección ambiental no ha sido prioridad en el tema. El Programa Bracero, las migraciones internas hacia el sureste de la frontera estadunidense, el Programa Nacional Fronterizo y, sobre todo, el Programa de Industrialización Fronteriza convirtieron a la región en un espacio altamente industrializado con un crecimiento poblacional acelerado e infraestructura urbana deficitaria. El deterioro ambiental de la zona fronteriza ha orillado a los gobiernos, las organizaciones ambientalistas, grupos de interés y universidades a plantear soluciones concretas (Cohen y Flores, 2010).

Las Organizaciones de la Sociedad Civil (OSC) son un elemento clave en la CdT, el conocimiento y preocupación por los temas ambientales han llevado a la creación de nuevas organizaciones. Por un lado se encuentran las organizaciones creadas por profesionales y, por otro, la problemática ambiental ha instaurando la organización popular, diversificando actividades, objetivos y alcances. De acuerdo con Silvan y García (2012), se identifican las organizaciones según once temas ambientales en las que participan:
1. Conservación
2. Reforestación con planta nativa
3. Manejo de residuos
4. Huertos
5. Agua
6. Comunidades nativas
7. Medio ambiente urbano
8. Gestión ambiental empresarial
9. Colaboración transfronteriza
10. Educación, capacitación, comunicación, investigación y organización
11. Actividades económicas
12. Restauración

En cuanto al país de origen, más no de su acción, se tiene a un número importante de OSC's cuyo trabajo está orientado a la protección ambiental en lo general y en lo particular con el agua de la Cuenca del Río Tijuana. Para el caso de Estados Unidos se tienen los siguientes:

 a. Tijuana River Action Network
 b. Tijuana River Valley Recovery Team
 c. The San Diego Foundation
 d. WildCost/Costa Salvaje
 e. Surfrider Foundation
 f. Environmental Education Council for the Californias
 g. Backcountry Land Trust
 h. World Conservation Union
 i. I Love a Clean San Diego
 j. Friends of San Diego Wild Life Refuge
 k. The Nature Conservancy
 l. The Resources Legacy Fund Foundation, y
 m. The International Community Foundation
 n. San Diego-Tijuana Border Initiative
 o. Southwest Wetland Interpretative Association
En los últimos años han surgido en la región un gran número de OSC’s que se han enfocado a diversos campos desde la educación ambiental no formal hasta la capacitación. En los últimos 15 años las OSC’s han conseguido tener mayor penetración en diversos sectores de la sociedad y la comunidad educativa logrando trasmitir el valor de los temas ambientales. Las recientes organizaciones, creadas principalmente por jóvenes, han usado de la tecnología y redes sociales para tener mayor difusión de sus objetivos y logros a nivel global y principalmente buscan tener la atención de niños y adolescentes.

Las OSC’s cada vez tienen mayor participación en los esquemas gubernamentales y son los mismos esquemas gubernamentales los que exigen la participación de las OSC’s en la toma de decisiones, creación de políticas públicas, declaratorias de conservación, programas ambientales, planeación de las ciudades, así como para la realización de obra pública; es aquí donde se requiere una profesionalización, capacitación y formalización de las organizaciones para poder incidir y trascender en las políticas públicas.

La participación social en la CrT se ve reflejada en una serie de proyectos y actividades que promueven la cultura y la educación de la población en relación al Río Tijuana. Uno de los más notables fue la “Fiesta del Río”, donde cada año se celebró el Día Nacional de los Estuarios, así como la cultura y la diversidad biológica de la reserva fronteriza. También se conmemora la expedición de “Portolá” que acampó en el Estuario del Río Tijuana el 13 de mayo de 1769, marcando la expansión española en lo que ahora comprende el área metropolitana San Diego-Tijuana. El evento atrae alrededor de 1,500 personas para celebrar el ambiente, las raíces y la cultura de la región que rodea el estuario del Río Tijuana, área que ha sido el hogar de los kumiai. Los principales actores en la promoción de la fiesta son el condado de San Diego, Think Blue San Diego, Centro Living Coast Discovery y la nación india Kumeyaay entre otras.

Desde hace siete años, organizaciones de la sociedad civil, la iniciativa privada, el gobierno, estudiantes, profesores y ciudadanos de ambos lados de la frontera, han estado trabajando de manera conjunta durante los fines de semana en el mes de septiembre considerado como el “Mes de Acción por el Río Tijuana” (Tijuana River Action Month - TRAM), con la finalidad de mejorar las condiciones ambientales de esta cuenca hidrográfica compartida. En el 2015 se llevaron a cabo 14 eventos tanto en México como en Estados Unidos donde participaron 3,945 voluntarios que en conjunto dedicaron 15,780 horas de trabajo, los resultados del esfuerzo conjunto fue la recolección de 2.80
toneladas de basura y 284 llantas de desecho, la plantación de 160 plantas nativas y la mejora de 19.2 has de hábitat.

Por lo que respecta a iniciativas de la sociedad civil desde México, PRONATURA Noroeste, A.C. (PNO) es la organización conservacionista más antigua y extensa de México, cuya misión es “la conservación de la flora, la fauna y los ecosistemas prioritarios del noroeste de México, para promover el desarrollo de la sociedad en armonía con la naturaleza” (http://pronatura-noroeste.org/). Una de las zonas prioritarias de atención para Pronatura Noroeste es precisamente la CRT, el cual cuenta con un proyecto de acción cuyo objetivo es mejorar el manejo de la Cuenca, la exploración de alternativas para el manejo sustentable del agua y la restauración de los sistemas riparios asociados a la Cuenca. Además, el proyecto tiene una visión de carácter binacional, lo que estrecha los lazos de cooperación entre los estados de California y Baja California (http://pronatura-noroeste.org/sitios/rio-tijuana/).

Una de las organizaciones que tienen una fuerte presencia en la protección del Río Tijuana, y su zona de influencia, es Proyecto Fronterizo de Educación Ambiental, A.C. (PFEA) cuyas acciones de intervención están orientadas a la protección del océano, arroyos y costas de la Cuenca. Entre sus programas de acción se encuentran proyectos comunitarios como “Salvemos la Playa”, Monitoreo Ciudadano de Calidad del Agua, Restaurantes Amigos del Mar, campañas de limpieza con escala de cuenca por 18 años en 34 ediciones con la participación de más de 47,000 voluntarios que han retirado 220,000 kgs de basura de playa, cañadas y arroyos, además de ofrecer talleres de educación ambiental relacionados a las costas de desembocadura del Río Tijuana (http://pfea.org/).

En materia del manejo de agua el PFEA implementó el Programa Ciudadano de Calidad de Aguas Costeras desde el 2014, mediante el cual semanalmente analiza muestras de agua en cinco puntos a lo largo de las playas de Tijuana en un laboratorio propio, equipado con la misma tecnología utilizada por la Comisión Federal para la Protección contra Riesgos Sanitarios (COFEPRIS). Los resultados de estos análisis se publican al día siguiente de cada muestreo para beneficio del público y uso por parte de las autoridades competentes, a quienes se envía un reporte. Para mayor facilidad de consulta del público, se transmite la información a través de redes sociales, y se utiliza una aplicación que puede accederse por internet o telefonía celular denominada Swim Guide (www.theswimguide.com). Con este servicio PFEA aspira a brindar elementos de información para que el público esté en condiciones de elegir conductas responsables en relación a sus actividades recreativas en las playas y para que las autoridades los usen como referencia para la toma de decisiones en la protección de la salud ambiental y humana en esta zona.

En el municipio de Tecate, Fundación La Puerta desarrollada proyectos para la conservación del ambiente, apoyo a la sociedad y a la educación, operando el Centro de Educación Ambiental Las Piedras, que atiende a miles de niños y niñas de escuelas primarias de la localidad con programas de educación ambiental. Así mismo maneja un programa de voluntariado juvenil con actividades deportivas, recreativas y educativas al aire libre. Organiza además el festival del Día Mundial del Medio Ambiente desde el año 2000 en las instalaciones del Parque del Profesor, un espacio de convivencia, educación y capacitación en protección ambiental, de los recursos hídricos de la Cuenca y la protección
de las plantas nativas de la zona, es un lugar al que acude un gran número de estudiantes, habitantes de Tecate y sus alrededores y especialistas con el objeto de mejorar las condiciones ambientales y de vida de la sociedad a ambos lados de la frontera.

Un proyecto emblemático para la recuperación ambiental del río Tecate es el denominado Río Parque Tecate. El río Tecate es una corriente que fluye generosamente durante la temporada de lluvias y durante el verano se encoge convirtiéndose en un pequeño canal o flujo subterráneo a través de su sustrato arenoso. Durante la época de secas el río hace presencia mediante el bosque ripario de sauces, sicomoros y encinos, un listón verde que se entrelaza entre las montañas áridas y el corazón de la ciudad de Tecate.

En los años 1940’s Tecate fue un pueblo con abundancia de agua, razón por la cual la Cervecería Tecate se instaló en esta ciudad, donde decenas de pozos con excelente calidad de agua situados a lo largo del valle daban soporte a también a pequeños ranchos y el bosque ripario proveía pastura, viñedos, campos de avena, alfalfa y cebada. Al igual que en caso de otros ríos urbanos en el mundo, la ciudad de Tecate dio la espalda al Río durante décadas. En 1999 se asignaron recursos federales destinados a construir un canal de concreto para alejar las aguas residuales de la ciudad por este cauce. Fundación La Puerta propuso una alternativa eco-hidrológica a la canalización, mediante el encausamiento eco-hidrológico centrado en la conservación y restauración del río y su integración a la vida la ciudad.

En ese mismo año, Fundación La Puerta lideró un programa para educar a los gobiernos locales y a los pobladores de Tecate. Con apoyo de expertos, se condujeron conferencias y mesas redondas, esfuerzos de investigación y elaboración de publicaciones sobre modelos de ríos urbanos (Michel y Graizbord, 2002). Como resultado de este proceso se trazaron planes, se desarrolló una visión de un Río Parque y se estableció un Patronato. En 2006 el Patronato del Proyecto Cuenca del Río Tecate, en colaboración con Fundación La Puerta, la CESPTE y la Cervecería Tecate invirtieron recursos financieros en la construcción de 500 metros de andador, con iluminación y diseño paisajístico, que constituye un modelo de cómo puede integrarse el Río como un espacio público para el disfrute comunitario.

En 2007 la CESPTE con recursos de la Agencia de Protección del Ambiente (Enviromental Protection Agency - EPA) de Estados Unidos, inició un sistema de humedales para mejoramiento de la calidad de las aguas tratadas en el punto de descarga de la Planta de Tratamiento de Aguas Residuales (PTAR) para revitalizar el Río, y el ecosistema ripario. A partir del 2008, el Gobierno del Estado a través de la SÍDUE, también se apropió de esta visión asumiendo el costo y obra de la ampliación del andador del Río Parque. A la fecha se ha encausando casi 10 kilómetros del efluente mediante un cauce construido con terraplenes de piedra, transformando el espacio en un parque lineal con equipamiento, que resuelve los desbordamientos al mismo tiempo que conserva la vegetación, sirve para uso recreativo y mejora la imagen urbana.
Existen un gran número de OSC’s en la CRT cuyas actividades fomentan el cuidado del ambiente y del agua en particular, por citar algunos otros ejemplos se tienen los foros Green Talks, talleres de educación ambiental del Centro de Educación Ambiental Las Piedras en Tecate, talleres de educación ambiental del Ecoparque en Tijuana, campañas de limpieza del Río Tecate por el Grupo de Mujeres “Lluvia del Sur”, etc. Una actividad importante en el manejo del agua son los huertos urbanos que promueve la organización “Cultiva Ya” y el trabajo del cuidado del Jardín Binacional para propagar planta nativa y también huertos comunitarios urbanos con involucramiento de personas de la comunidad y el apoyo de la Sociedad de Plantas Nativas de B.C., entre otras actividades.

Además, trabajan en la zona la Coalición KAWI, un grupo de jóvenes que apoyan a otros grupos con limpiezas del río e iniciativas de forestación. Km1 otro grupo de jóvenes que hacen limpiezas de playas. El Colectivo Chilpancingo Pro Justicia Ambiental, Alamar Sustentable que gestionan la protección y restauración del Arroyo Alamar; RECIMEC promueve también la defensa y restauración del Arroyo Alamar. Nación Verde reforesta importantes segmentos en las zonas habitadas. Finalmente, Pronatura Noroeste A.C. maneja un proyecto de restauración del humedal al pie de la Presa Abelardo L. Rodríguez y otro en el punto de descarga de la Planta de Tratamiento de Aguas Residuales de Tecate, sobre el cauce de este arroyo.

El CUADRO 17 presenta las OSC’s que recibieron apoyo del gobierno municipal de Tijuana durante 2015 y 2016, sin embargo, son muchas más las asociaciones que trabajan en apoyo a la protección y conservación de los recursos naturales en la CRT.

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Objeto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundación que Transforma</td>
<td>Promover y fomentar una cultura urbana proactiva enfocada al medio ambiente</td>
</tr>
<tr>
<td>Proyecto Fronterizo de Educación Ambiental</td>
<td>Propiciar procesos generadores de cambio hacia prácticas ambientales sustentables</td>
</tr>
<tr>
<td>Red Mexicana de Manejo Ambiental de residuos de Baja California</td>
<td>Crear y promover condiciones que contribuyan al manejo adecuado de los residuos</td>
</tr>
</tbody>
</table>
Asociación Mexicana para Estudios, Proyectos y Organización Ambiental
Promover entre la población la prevención y control de contaminación del agua y suelo

CICEA Papalotzin
Protección, conservación y mejoramiento del medio ambiente

Wastelab
Promover el manejo integral de materiales reciclables de manera eficiente para contribuir a la conservación del medio ambiente

Proyecto Ambiental Educativo Aureola
Generar conciencia social en el cuidado y preservación del ambiente

Red Mexicana de Manejo Ambiental de Residuos de Baja California
Crear y promover condiciones que contribuyan al manejo adecuado de los residuos en Baja California

Alter Terra
Sustentabilidad a través de educación y capacitación de la conservación de los recursos naturales

Crisol Ambiental
Implementar planes, programas y proyectos que contribuyan al desarrollo sustentable de la sociedad a nivel local, regional, nacional e internacional

Proyectos sociales en el manejo del agua

Las diversas organizaciones e instituciones que se mencionaron en la sección anterior han desarrollado un gran número de proyectos cuya intención es mejorar el ambiente natural, pero muchas de ellas también se enfocan al manejo del agua en la Cdt. Un proyecto que está asociado a la mejora del manejo del agua, específicamente para la ciudad de Tijuana, es el programa Ecoparque.

El Programa Ecoparque es una iniciativa de El Colegio de la Frontera Norte (EL COLEF), centro público de investigación de el Consejo Nacional de Ciencia y Tecnología (Conacyt) y con el apoyo de otras instituciones y voluntarios, donde se han realizado un sinnúmero de propuestas para el tratamiento de aguas residuales urbanas, forestación urbana, manejo integral de residuos sólidos municipales, educación ambiental, así como la conservación de plantas nativas, entre otras muchas actividades. Ecoparque ha evolucionado desde su inauguración en 1993 para convertirse en un centro para la sustentabilidad urbana y el cambio climático en el norte de México. El área forestada en una ladera de la ciudad, constituye la cuarta área verde más extensa de Tijuana y anualmente atiende a más de 12,000 escolares de educación básica, media y media superior (EL COLEF, Ecoparque, página electrónica https://www.colef.mx/ecoparque/).

Las actividades del programa de Ecoparque de EL COLEF se dividen en tres áreas que se interrelacionan entre sí.

1. ** Aguas residuales:** cuenta con una planta de tratamiento alternativo de aguas residuales, investigación científica aplicada en la solución de problemas relacionados con la calidad del agua, técnicas de reforestación de laderas y cañones, un vivero para la propagación de plantas nativas, etc.

13. **Educación ambiental:** se imparten talleres tanto en las instalaciones como en escuelas o exposiciones sobre tratamiento de aguas, compost, reducción y reciclaje de materiales, técnicas de reforestación, reciclaje de papel, agricultura urbana, etc.
14. Lombricompostaje: es una biotecnología que se apoya en seres vivos para transformar materia orgánica a partir de la planta de tratamiento de aguas residuales de Ecoparque, es una técnica con un proceso limpio, de bajo costo y no ocupa mucho espacio para su aplicación. El material transformado puede usarse como fertilizante (composta).

FOTOGRAFÍA 2 Vista aérea de Ecoparque, El Colef, Tijuana, B.C.

En el municipio de Tecate, se desarrolló a partir del 2006 un proyecto cuya finalidad era la construcción de humedales en el cauce del Río Tecate, para aprovechar los 11 km. de recorrido de esta corriente en la ciudad del mismo nombre. Cabe destacar que originalmente se tenía contemplado desde 1999 construir un cauce encementado para la rápida evacuación de las aguas y evitar inundaciones en este tramo, proyecto que no se concretó (COCeF, 2007). Sin embargo, con la colaboración de diversas instituciones del gobierno municipal, estatal y federal, además de un gran número de organizaciones de la sociedad civil, encabezadas por la Fundación La Puerta, se logró desarrollar el Proyecto Río Parque Tecate, con lo que se logró concretar un importante proyecto para el mejoramiento de la calidad del agua del Río Tecate y la restauración de su cauce.
FOTOGRAFÍA 3 Restauración del cauce del Río Tecate, 2012

En San Diego, California, el equipo del Tijuana River Valley Recovery Team (https://www.waterboards.ca.gov/sandiego/water_issues/programs/tijuana_river_valley_strategy/) desarrolla el programa denominado “Recovery Strategy: Living with wáter”, que demuestra de manera detallada los problemas ambientales a los que se enfrenta el Río Tijuana a su paso por ambos países y define las etapas de intervención de un amplio número de actors (sociales, gubernamentales y ambientales) para el saneamiento de esta corriente, implementando a su vez campañas permanentes de limpieza del cauce del Río Tijuana.

FOTOGRAFÍA 4 Actividades del Tijuana River Valley Recovery Team, 2011

Por su parte, Tijuana River Action Network (TRAN) es una red colaborativa y de acción de grupos de base comunitaria y sin fines de lucro tanto de Estados Unidos como de México comprometida con la colaboración transfronteriza para abordar la conservación y restauración de la CRT participando en la divulgación, educación y defensa de los recursos naturales de la región. En su campaña 2016, colaboraron 2,934 voluntarios con un total de 8,136 horas de trabajo, 2 millas de senderos atendidos, 8.5 has de habitat mejorado, más de 64,000 libras (29 toneladas) de residuos sólidos removidos del cauce, 29 llantas de auto removidas y 320 plantas nativas plantadas en el sitio (http://www.tjriveraction.net/about/).

FOTOGRAFÍA 5 Acciones del Tijuana River Action Network (TRAN)

FOTOGRAFÍA 6 Labores de limpieza en el Río Tecate, Tecate, B.C.

La cultura Kumiai

Los grupos primarios que habitaron la CRT pertenecen al grupo de los kumiai, la cual se asentó desde Torrey Pine, en California, hasta la región central de Baja California, así lo demuestran las evidencias de su presencia a la llegada de los exploradores españoles en el siglo XVIII. Los kumiai en ese momento, fue un grupo seminómada que vivía en chozas construidas con ramas de árboles que abandonan con el cambio de las estaciones (Shipek, 1969, 1993, citado por Ojeda y Espejel, 2008). La alimentación de este grupo se basaba en la recolección, la caza o la pesca, dependiendo de la época del año (Piñera y Ortiz, 1985).

Los kumiai tenían formas particulares para manejar su territorio, se sabe que usaban el fuego para manipular la arquitectura de los arbustos y para mejorar la productividad del suelo en el manejo de pastizales, necesarios para el sustento para las especies que cazaban, así como el empleo de ramas de árbol para cavar y cosechar bulbos y tubérculos (Barbour, et al, 1993, citado por Ojeda y Espejel, 2008).

La cultura kumiai pertenece a la familia lingüística yumana. Después del tratado Guadalupe en 1848, el grupo kumiai quedó separado por la línea internacional entre México y Estados Unidos, a pesar de ello, este grupo indígena conservó sus relaciones de parentesco permanecieron vigentes, con lo que la familia daba cohesión a las rancherías que formaron con el transcurso de los años (Laylabder, 1991, citado por Tapia y Grijalva, 2012).

En el lado estadounidense la reserva de Campo, ubicada justo al norte de la frontera internacional en el sureste de San Diego abarca alrededor de 65 km² y cuenta con dos secciones desconectadas con unos 365 habitantes. En la parte baja se encuentran las reservas La Posta, Manzanita y Cuyapaipe (Wilken, 2005). En este lado de la Cuenca se ha perdido la lengua materna y muchas prácticas culturales. Sin embargo, éstas han sido mantenidas en el lado mexicano donde, según estadísticas de INEGI (2015), existen 486 hablantes de esta lengua indígena. En Baja California, en el municipio de Tecate los Kumiai de Juntas de Nejí es el grupo indígena más representativo. La relevancia de esta etnia radica en los fuertes lazos familiares y lingüísticos con los grupos kumiai (o Tipai) al sur del condado de San Diego, Estados Unidos, tales como Campo y Jamul. Los habitantes se dedican a la agricultura y a la cría de ganado. Los problemas que enfrentan en sus localidades de origen son escasez de agua, la erosión de sus tierras, pérdida de espacios de pastoreo, destrucción de sitios arqueológicos, mala calidad de caminos de acceso, dificultades para comprobar la tenencia de la tierra e invasiones de ejidos vecinos (IMPLAN-Tijuana, 2015).

Instituciones educativas

Las universidades y centros de investigación son los pilares para el desarrollo de la investigación científica y tecnológica, la formación de recursos humanos especializados, la generación de innovaciones tecnológicas, así como la vinculación de la actividad científica con la sociedad y el sector productivo en la solución de problemas concretos.
En la CRT existe un buen número de instituciones educativas y centros de investigación de competencia nacional e internacional.

Dentro de las instituciones públicas y particulares en la educación superior se imparten clases en las siguientes áreas de conocimiento: ciencias naturales y exactas; ciencias de la salud; ciencias sociales y humanidades; administrativas; ciencias de la educación; ciencias agropecuarias; y ciencias de la ingeniería y tecnología (Gobierno del Estado de Baja California, 2010). Desde la elaboración del proyecto *Una visión binacional para la Cuenca del Río Tijuana*, en agosto de 2005, las actividades de investigación, planeación y gestión en la Cuenca han avanzado en varias vertientes.

La investigación científica continúa en las universidades locales y en centros de investigación tanto de México como de Estados Unidos en temas como: cambios de cobertura del suelo en la Cuenca; la producción de sedimentos y su acumulación en las partes bajas; construcción de humedales artificiales; la ecología del estuario y los problemas de calidad del aire; entre otros (Ganster; 2010:191).

A continuación, se mencionan algunas de las principales instituciones educativas y centros de investigación que aportan conocimiento científico en la CRT (ver CUADRO 18).

CUADRO 18 Principales instituciones de educación superior en la Cuenca del Río Tijuana

<table>
<thead>
<tr>
<th>México</th>
<th>Estados Unidos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universidad Autónoma de Baja California</td>
<td>San Diego State University</td>
</tr>
<tr>
<td>Instituto Tecnológico de Estudios Superiores de Tijuana</td>
<td>University of California</td>
</tr>
<tr>
<td>Universidad Politécnica de Baja California</td>
<td>University of San Diego</td>
</tr>
<tr>
<td>Centro de Enseñanza Técnica y Superior</td>
<td></td>
</tr>
<tr>
<td>Universidad Iberoamericana Noroeste</td>
<td></td>
</tr>
<tr>
<td>Universidad Xochicalco</td>
<td></td>
</tr>
<tr>
<td>El Colegio de la Frontera Norte</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: elaboración propia.

FOTOGRAFÍA 7 Universidad Autónoma de Baja California, Tijuana, B.C.

[![Imagen de la Universidad Autónoma de Baja California](http://www.tij.uabc.mx/campus/images/otay.jpg)](http://www.tij.uabc.mx/campus/images/otay.jpg)

La Universidad Autónoma de Baja California (UABC) es la institución de educación superior más grande del estado de Baja California en lo que se refiere al número de estudiantes, ya que en el ciclo 2017-2 la población estudiantil llegó a los 22,033 alumnos en el campus Tijuana, 5,605 en el campus Valle de las Palmas y en Tecate su población fue de 1,171. La UABC, campus Tijuana, ofrece a nivel licenciatura los siguientes programas educativos:

- Facultad de Artes
- Facultad de Ciencias Químicas e Ingeniería
- Facultad de Contaduría y Administración
- Facultad de Deportes
- Facultad de Derecho
- Facultad de Economía y Relaciones Internacionales
- Facultad de Humanidades y Ciencias Sociales
- Facultad de Idiomas
- Facultad de Medicina y Psicología
- Facultad de Odontología
- Facultad de Turismo y Mercadotecnia
- Instituto de Investigaciones Históricas
- Escuela de Ciencias de la Salud Valle de las Palmas.

Por lo que respecta al campus en Tecate, éste cuenta con las carreras de:

- Administración y Administración Pública
- Contabilidad
- Idiomas
- Derecho
- Ingeniería y Tecnología

Adicionalmente, la UABC-Tijuana ofrece una amplia variedad de programas de maestría, doctorado y especialidades, programas asociados a sus facultades e institutos de investigación.
El Instituto Tecnológico de Tijuana (ITT) posee una planta estudiantil de aproximadamente 6,500 alumnos y ofrece las siguientes licenciaturas:

- Arquitectura
- Contaduría Pública
- Ingeniería Industrial
- Ingeniería Ambiental
- Ingeniería Biomédica
- Ingeniería Bioquímica
- Ingeniería Civil
- Ingeniería Electromecánica
- Ingeniería en Aeronáutica
- Ingeniería en Diseño Industrial
- Ingeniería en Gestión Empresarial
- Ingeniería en Informática
- Ingeniería en Logística
- Ingeniería en Nanotecnología
- Ingeniería en Sistemas Computacionales
- Ingeniería en Tecnologías de Información y Comunicaciones
- Ingeniería en Química
- Ingeniería en Mecánica
- Licenciatura en administración

El ITT también ofrece 6 maestrías y 3 doctorados en sus dos campus ubicados en la ciudad de Tijuana.
El Centro de Enseñanza Técnica y Superior (CETYS Universidad) es una institución particular de enseñanza educativa fundada en 1961 en Mexicali, Baja California, bajo el auspicio de un grupo de empresarios comprometidos con la educación de la región. Durante la década de 1970 se estableció un nuevo campus en la ciudad de Tijuana. El CETYS UNIVERSIDAD está organizado en tres colegios, los cuales ofrecen los siguientes programas en el campus Tijuana:

Colegio de Ingeniería:

1. Ingeniería en Cibernética Electrónica
15. Ingeniería en Sistemas Computacionales
16. Ingeniería en Diseño Gráfico Digital
17. Ingeniería en Energías Renovables
18. Ingeniería Industrial
19. Ingeniería Mecánica
20. Ingeniería en Mecatrónica

Colegio de Administración:

1. Licenciatura en Administración de Empresas
21. Licenciatura en Administración de Mercadotecnia
22. Licenciatura en Contaduría Pública Internacional
23. Licenciatura en Inteligencia de Negocios e Innovación
24. Licenciatura en Negocios Internacionales
25. Licenciatura en Negocios Internacionales Global Program (con clases 100% en inglés)

Colegio de Ciencias Sociales y Humanidades

1. Licenciatura en Derecho
2. Licenciatura en Psicología Clínica
3. Licenciatura en Psicología Infantil
4. Licenciatura en Psicología Organizacional

La Universidad Iberoamericana del Noroeste, campus Tijuana, es un centro educativo jesuita fundada en 1982, la cual ofrece 12 licenciaturas y programas a nivel técnico y postécnico. Las licenciaturas que ofrece son:

- Licenciatura en Administración de Empresas
- Licenciatura en Arquitectura
- Licenciatura en Comunicación
- Licenciatura en Derecho
- Licenciatura en Diseño Gráfico Estratégico
- Licenciatura en Enfermería
- Licenciatura en Nutrición y Ciencia de los Alimentos
• Licenciatura en Psicología e Ingeniería Industrial

Además cuenta con el Programa de Nivel Técnico en Enfermería y nueve programas de maestría:

1. Maestría en Diseño Estratégico Digital
26. Maestría en Derecho
27. Maestría en Desarrollo Organizacional
28. Maestría en Planeación Estratégica de Ciudades
29. Maestría en Educación y Desarrollo de la Práctica Educativa
30. Maestría en Desarrollo Humano
31. Maestría en Gestión Ejecutiva Internacional
32. Maestría en Logística Internacional y
33. Maestría en Gestión y Políticas Públicas

FOTOGRAFÍA 11 Universidad Xochicalco, Tijuana, B.C.

El Centro de Estudios Universitarios Xochicalco es una institución educativa dependiente de la Asociación Civil de Ciencias, Artes y Letras de México para la Educación Contemporánea (Kalmecac), con validez oficial otorgada por el Gobierno del Estado, establecida en 1979. La Universidad Xochicalco cuenta con 13 licenciaturas:

1. Licenciatura en Administración y Desarrollo Empresarial
2. Licenciatura en Arquitectura
3. Licenciatura en Ciencias de la Educación
4. Licenciatura en Comercio Internacional y Aduanas

50
5. Licenciatura en Comunicaciones y Relaciones Públicas
6. Licenciatura en Criminalística
7. Licenciatura en Derecho
8. Licenciatura en Diseño Integral
9. Licenciatura en Medicina
10. Licenciatura en Mercadotécnica
11. Licenciatura en Nutrición
12. Licenciatura en Optometría
13. Licenciatura en Psicología

Además de ofrecer 13 programas de maestría relacionados con los programas de licenciatura y un doctorado en Educación.

FOTOGRAFÍA 12 El Colegio de la Frontera Norte, Tijuana, B.C.

El Colegio de la Frontera Norte, A.C. (EL COLEF), establecido en 1984 en Tijuana, es una institución dedicada a la investigación y docencia de alto nivel cuyo objetivo es generar conocimiento científico sobre los fenómenos regionales de la frontera México-Estados Unidos, formar recursos humanos de alto nivel y vincularse institucionalmente para contribuir al desarrollo de la región. El COLEF forma parte de los 26 centros públicos de investigación del Consejo Nacional de Ciencia y Tecnología (CONACYT) y ofrece los siguientes posgrados:

1. Doctorado en Ciencias Sociales con especialidad en Estudios Regionales
2. Doctorado en Estudios Culturales
3. Doctorado en Estudios de Migración

4. Maestría en Acción Pública y Desarrollo Social (Ciudad Juárez, Chihuahua)

5. Maestría en Administración Integral del Ambiente

6. Maestría en Desarrollo Regional

7. Maestría en Economía Aplicada

8. Maestría en Estudios Culturales

9. Maestría en Estudios de Población

10. Maestría en Gestión Integral del Agua (Monterrey, Nuevo León)

La planta estudiantil de El Colef fue de 148 estudiantes durante el 2017, 99 de ellos en los siete programas de maestría y 49 en los tres doctorados.

La Universidad Estatal de San Diego (SdSU) es la institución de educación superior más antigua en San Diego, California. Desde su fundación en 1897, la Universidad ha crecido hasta convertirse en una universidad líder en investigación pública. Cada año, SdSU ofrece a más de 36,000 estudiantes la oportunidad de participar en un currículo académico distinguido por el contacto directo con el profesorado y un énfasis internacional que los prepura para un futuro global.

Los programas académicos de SdSU están organizados en siete áreas:

- Colegio de Artes y Letras
- Colegio de Educación
• Colegio de Ingenierías
• Colegio de Salud y Servicios Humanos
• Colegio de Estudios Profesionales y Artes Finas
• Colegio de Ciencias
• Colegio de Negocios

En estos siete programas, se oferta un total de 89 especialidades (Majors) tanto de las ciencias naturales, ciencias sociales y ciencias aplicadas.

La Universidad de California, en San Diego (UC SAN DIEGO) fue fundada en 1960 y en la actualidad es considerada como una de las 15 instituciones de investigación más importantes del mundo, esto debido a que 16 personalidades reconocidas con el Premio Nobel han dictado cátedra en la universidad. UC SAN DIEGO ofrece un amplio campo académico en seis programas de pregrado, cinco divisiones académicas y cinco escuelas de graduados y profesionales, llegando a atender a más de 36,400 inscripciones hasta el otoño de 2017.
La Universidad de San Diego es una universidad católica, dedicada a los valores establecidos por sus fundadores, el Obispo Charles Francis Buddy, de la Diócesis de San Diego, y la Madre Rosalie Hill, de la congregación del Sagrado Corazón. La Universidad de San Diego fue fundada en 1949 y en la actualidad cuenta con más de 800 profesores y 7,800 estudiantes de pregrado, posgrado. La universidad es dirigida por un patronato independiente, la cual cuenta con ocho divisiones académicas: el Colegio de Artes y Ciencias; Escuelas de Administración de Empresas; Ingeniería; Derecho; Liderazgo y Ciencias de la Educación; Enfermería y Ciencias de la Salud; Paz; y la División de Educación Continua y Profesional. La USD ofrece a sus estudiantes estudios de licenciatura, maestría y programas de doctorado.

Gobierno y política

Una vez decretado como estado libre y soberano en 1952, Baja California inició un proceso político y jurídico para administrar los recursos naturales que se encontraban en su territorio. De esta manera el primer gobernador del estado fue Alfonso García González, y el primer gobernador electo fue Braulio Maldonado Sández. Desde ese año hasta 1989 con Oscar Baylón Chacón, todos los gobernadores habían surgido de las filas del Partido Revolucionario Institucional (PRI). A partir del periodo de 1989-1995 con Ernesto Ruffo Appel y hasta la actualidad, que el estado es gobernado por un miembro del Partido Acción Nacional, con lo que se convirtió en ser el primer gobernador a nivel nacional en no pertenecer al PRI. Actualmente el estado es gobernado por Francisco Vega de Lamadrid para el periodo 2013-2019.

La alternancia política en las administraciones municipales de Tijuana y Tecate, no ha sido un problema de fondo que dificulte la colaboración para la solución de problemas ambientales que padecen ambos municipios. Para el caso específico del manejo y conservación de los recursos hídricos de la CRT, la jurisdicción ambiental rebasa la legislación local, siendo el estado, a través de la Comisión Estatal del Agua de Baja California (CEA-B.C.) y los organismos operadores del agua, y más aún, el nivel federal, los responsables directos en esta materia.

Para el caso de California, el estado es gobernado por Edmund G. Brown Jr., perteneciente al Partido Demócrata de Estados Unidos, desde el 2011. El territorio de California está dividido en 58 condados, uno de ellos es el condado de San Diego, cuyo territorio es el más meridional del estado de California, el cual limita con el Océano Pacífico al oeste y con el condado de Imperial al este. El condado de San Diego posee su propio sistema de recaudación de impuestos sobre la propiedad, tribunales y elecciones propias, así como la responsabilidad de hacer cumplir las leyes que les competen. El republicano Kevin Faulconer es el actual alcalde de San Diego.

Infraestructura para las artes y cultura

La infraestructura que se destina al fomento de las artes y la cultura de una país es un indicador estrechamente relacionado con los valores de identidad de la población. Además, de acuerdo con la UNESCO, “está profundamente vinculada con la organización y el funcionamiento de la sociedad y evidencia el nivel de desarrollo de una comunidad” (Ministro de Cultura de Colombia, 2015). Esta infraestructura está relacionada con aquellos lugares que se dedican al fomento del teatro, danza, artes plásticas, historia, etc. Por lo tanto, en este tipo de recintos se puede exponer, presentar y discutir temas tan variados que van desde el significado de una pequeña construcción histórica para una ciudad hasta las formas en que se construyen las ciudades modernas. La infraestructura destinada a las acciones de promoción de las artes y cultura con la que cuentan los municipios que conforman la parte mexicana de la CRT son los siguientes (ver CUADRO 19).
CUADRO 19 Infraestructura dedicada a las artes y cultura en Tijuana y Tecate, B.C. y San Diego, California

<table>
<thead>
<tr>
<th>Tijuana</th>
<th>Tecate</th>
<th>San Diego</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casa de la Cultura Altamira</td>
<td>Centro Cultural Tecate</td>
<td>Natural History Museum</td>
</tr>
<tr>
<td>Casa de la Cultura Playas</td>
<td>Centro Estatal de las Artes</td>
<td>Museum of Man</td>
</tr>
<tr>
<td>Instituto Municipal de Arte y Cultura</td>
<td>Parque del Profesor</td>
<td>The New Children’s Museum</td>
</tr>
<tr>
<td>Centro Cultural Tijuana</td>
<td>Corredor Histórico Carem</td>
<td>Museum of Contemporary Art</td>
</tr>
<tr>
<td>Centro Estatal de las Artes</td>
<td></td>
<td>Museum of Photographic Arts</td>
</tr>
<tr>
<td>Centro de las Artes Musicales</td>
<td></td>
<td>U.S.S. Midway Museum</td>
</tr>
<tr>
<td>Multiforo</td>
<td></td>
<td>Mingei International Museum</td>
</tr>
<tr>
<td>El Trompo-Museo Interactivo</td>
<td></td>
<td>Air & Space Museum</td>
</tr>
<tr>
<td>Museo Ámbar</td>
<td></td>
<td>History Center</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia.

Como lo demuestra la información del CUADRO 19, existe una gran diferencia entre los centros dedicados a las artes y cultura entre ambos municipios. Una primera razón se debe al tamaño poblacional de Tijuana respecto a Tecate, pero sobre todo a las inversiones que se destinan para este tipo de infraestructura, incluyendo la participación de diferentes actores sociales y OSC’s presentes. Un elemento central, que también influye en esta diferenciación, es su contexto fronterizo, ya que Tijuana, al ser vecina de la ciudad de San Diego, permite el intercambio de experiencias y formas de colaboración que influye en el enriquecimiento de estas actividades.

FOTOGRAFÍA 16 Casa de la Cultura, Colonia Altamira, Tijuana, B.C.

FOTOGRAFÍA 17 Casa de la Cultura Playas, Tijuana, B.C.

FOTOGRAFÍA 18 Instituto Municipal de Arte y Cultura, Tijuana, B.C.

FOTOGRAFÍA 19 Centro Cultural Tijuana, Tijuana, B.C.

FOTOGRAFÍA 20 Centro Estatal de las Artes, Tijuana, B.C.

FOTOGRAFÍA 21 Centro de las Artes Musicales, Tijuana, B.C.

FOTOGRAFÍA 22 Multiforo, Instituto de Cultura de Baja California, Tijuana, B.C.

FOTOGRAFÍA 23 El Trompo Museo Interactivo, Tijuana, B.C.

FOTOGRAFÍA 24 Museo Ámbar, Tijuana, B.C.

FOTOGRAFÍA 25 Centro Cultural Tecate, Tecate, B.C.

FOTOGRAFÍA 26 Centro Estatal de las Artes, Tecate, B.C.

FOTOGRAFÍA 27 Parque del Profesor, Tecate, B.C.

FOTOGRAFÍA 28 San Diego Natural History Museum, Balboa Park, San Diego, California

FOTOGRAFÍA 29 San Diego Museum of Man, Balboa Park, San Diego, California

FOTOGRAFÍA 30 The New Children's Museum, San Diego, California

FOTOGRAFÍA 31 Museum of Contemporary Art, San Diego, California

FOTOGRAFÍA 32 Museum of Photographic Arts, Balboa Park, San Diego, California

FOTOGRAFÍA 33 U.S.S. Midway Museum, Bahía de San Diego, California

FOTOGRAFÍA 34 Mingei International Museum, Balboa Park, San Diego, California

FOTOGRAFÍA 35 San Diego Air & Space Museum, Balboa Park, San Diego, California

FOTOGRAFÍA 36 San Diego History Center, Balboa Park, San Diego, California

1.4 EL CONTEXTO NORMATIVO-AMBIENTAL DE LA CUENCA DEL RÍO TIJUANA

El contexto binacional en el que se encuentra la CRT representa grandes desafíos para el diseño, implementación y seguimiento de una política ambiental común para ambos países. En principio, esto puede representar un gran problema al momento de aplicar los instrumentos de ordenamiento y planificación del territorio, en especial de los recursos hídricos de la Cuenca. Sin embargo, ambos países han trabajado de manera conjunta para desarrollar mecanismos de cooperación binacional, siendo un ejemplo de colaboración entre dos países notoriamente diferentes en cuanto a su política y mecanismos de gestión ambiental.

Marco binacional

En 1889 México y Estados Unidos crearon la Comisión Internacional de Límites y Aguas (CILA) para la atención conjunta relativa a límites internacionales y asuntos de agua transnacionales en los 3,181 km de frontera compartida. En lo que se refiere a los recursos hídricos, en 1944 se firmó el Tratado de Distribución de las Aguas Internacionales de los Ríos Colorado y Tijuana y Bravo, desde Fort Quitman, Texas al Golfo de México. Ambos países se comprometieron desde ese momento a gestionar el agua superficial y subterránea a través de lo establecido por la CILA. Este tratado se considera el eje del marco legal México-Estados Unidos para el manejo de las aguas transfronterizas. El Art. 3º indica que en los asuntos referentes al uso común de las aguas internacionales servirá de guía el siguiente orden de preferencias:

1. Usos domésticos y municipales
2. Agricultura y ganadería
3. Energía eléctrica
4. Otros usos industriales
5. Navegación y
6. Pesca y Caza

Los usos anteriores estarán sujetos a las medidas y obras sanitarias que convengan de común acuerdo los dos Gobiernos, los cuales se obligan a resolver preferentemente los problemas fronterizos de saneamiento. Con respecto al río Tijuana, el Art. 16º, señala que “Con el objeto de mejorar los usos existentes y de asegurar cualquier desarrollo futuro factible, la CILA estudiará, investigará y someterá a los dos Gobiernos para su aprobación”:

- Recomendaciones para la distribución equitativa entre los dos países de las aguas del sistema del Río Tijuana.
• Proyectos de almacenamiento y control de avenidas a fin de fomentar y desarrollar los usos domésticos, de irrigación y demás usos factibles de las aguas de este sistema.
• Estimaciones de los costos de las obras propuestas y de la forma en que la construcción de dichas obras o los costos de las mismas deberán ser divididos entre los dos Gobiernos.
• Recomendaciones respecto de las partes de las obras que deberán ser operadas y mantenidas por la Comisión y las partes de las mismas que deberán ser operadas y mantenidas por cada Sección. Los dos Gobiernos, cada uno por conducto de sus respectivas Secciones de la Comisión, construirán las obras que propongan y aprueben ambos Gobiernos, se dividirán la cantidad de obra o su costo y se distribuirán las aguas del sistema del Río Tijuana en las proporciones que ellos decidan. Los dos Gobiernos convienen en pagar por partes iguales el costo de la operación y mantenimientos conjuntos de las obras, y cada Gobierno conviene en pagar el costo de operación y mantenimiento de las obras asignadas a él con dicho objeto (CILA, 1944).

Los acuerdos de la Comisión se hacen constar en forma de Actas, suscritas por ambos países, las cuales son fuentes de derechos y obligaciones internacionales. En años recientes se han firmado una serie de Actas para tratar asuntos relacionados a la Cuenca del Río Tijuana, la más reciente es el Acta 320, firmada el 5 de octubre del 2015 en la ciudad de Tijuana, B.C., a fin de considerar el Marco General para la Cooperación Binacional entre México y los Estados Unidos, en los Asuntos Transfronterizos de la CRT. De esta manera y por primera vez se posibilita la atención en un marco de cooperación de la problemática de la región, principalmente el control de azolves, basuras y la calidad del agua (CILA, 2015). Bajo esta premisa, se establece un grupo base binacional para la Cuenca que incorporará representantes de la Comisión, autoridades federales, estatales, locales y de las organizaciones de la sociedad civil de ambos países. Los acuerdos a los que se han llegado en los últimos años por parte de la CILA se presentan en el CUADRO 20.

CUADRO 20 Actas y acuerdos de la Comisión Internacional de Límites y Aguas relacionadas con la Cuenca del Río Tijuana

<table>
<thead>
<tr>
<th>Acta</th>
<th>Fecha</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>270</td>
<td>30 de abril de 1985</td>
<td>Los gobiernos de México y los Estados Unidos en concordancia con las leyes vigentes nacionales, acuerdan a cooperar anticipando y considerando los efectos ambientales y consecuencias de proyectos planeados para tratar los problemas de saneamiento en el área de Tijuana-San Diego. Este problema resulta de descargas de aguas residuales no tratadas de Tijuana que cruzan la frontera internacional y contaminan la costa.</td>
</tr>
<tr>
<td>283</td>
<td>2 de julio de 1990</td>
<td>Se establece y describe la obligación contraída por los Estados Unidos de proporcionar tratamiento secundario, en una instalación construida en territorio de los Estados Unidos, a 1,100 L/s de aguas residuales de Tijuana, y cuyo costo ambos países compartirán. El acuerdo incluye la construcción de un emisor submarino localizado aproximadamente 3.5 millas adentro de la costa del Océano Pacífico.</td>
</tr>
<tr>
<td>296</td>
<td>16 de abril de 1997</td>
<td>Se establece la distribución de los costos de construcción, operación y mantenimiento para la Planta Internacional de Tratamiento de Aguas Residuales, construida bajo los acuerdos del Acta 283 para la solución internacional de los problemas de saneamiento de la frontera de San Diego y Tijuana. Establece también actividades de monitoreo relacionados con los proyectos de aguas residuales en Tijuana, la construcción por parte de los Estados Unidos de una planta binacional y un emisor submarino océánico; y adicionalmente pasos dirigidos a resolver contingencias ambientales y operacionales.</td>
</tr>
<tr>
<td>298</td>
<td>2 de diciembre de 1997</td>
<td>Establece recomendaciones tanto para la construcción de trabajos paralelos para el sistema de</td>
</tr>
</tbody>
</table>
bombeo y disposición de aguas residuales de la ciudad de Tijuana, como para la rehabilitación de la Planta de Tratamiento de Aguas Residuales de San Antonio de los Buenos. Esta renovación incrementará los niveles de tratamiento a nivel secundario y la capacidad total de tratamiento a un volumen de 1,100 L/s. La descarga final de aguas tratadas ocurrirá a un punto aproximadamente 9 km al sur de la frontera internacional.

<table>
<thead>
<tr>
<th>Núm.</th>
<th>Fechamento</th>
<th>Fecha</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>299</td>
<td>3 de diciembre de 1998</td>
<td>Autoriza el apoyo financiero de la CILA a la Comisión de Cooperación Ecológica Fronteriza para el desarrollo de proyectos para la solución de problemas de saneamiento fronterizo en proyectos de infraestructura de aguas residuales.</td>
<td></td>
</tr>
<tr>
<td>301</td>
<td>14 de octubre de 1999</td>
<td>Se autoriza un estudio conjunto a nivel de planeación para la conducción de agua del Río Colorado a la región de Tijuana, B.C. y San Diego, Ca. para explorar opciones de suministro de agua y generar información básica a las autoridades de los Estados Unidos y de México.</td>
<td></td>
</tr>
<tr>
<td>310</td>
<td>28 de julio de 2003</td>
<td>Esta Acta asegura la entrega de emergencia de agua del Río Colorado para uso en Tijuana, B.C. ampliando la minuta 240 para vender a la Comisión Estatal de Servicios Públicos de Tijuana (Cespt) agua de emergencia mientras se llevan a cabo las mejoras de infraestructura hasta 2008.</td>
<td></td>
</tr>
<tr>
<td>311</td>
<td>28 de julio de 2003</td>
<td>Esta Acta autoriza fondos para el tratamiento secundario de aguas residuales en Tijuana que descarga en aguas estadounidenses. El proyecto tratará residuos no tratados por la capacidad de 25 mgd (2,570 L/s) de la Planta Internacional de Tratamiento de Aguas Residuales (IWTP).</td>
<td></td>
</tr>
<tr>
<td>320</td>
<td>5 de octubre de 2015</td>
<td>Se establece un marco para la cooperación binacional en los asuntos transfronterizos de la cuenca del Río Tijuana. Se reconoce que existen preocupaciones de carácter internacional referentes a los escurrimientos pluviales que arrastran sedimentos, residuos sólidos y otros contaminantes que amenazan los recursos naturales de la CRT.</td>
<td></td>
</tr>
</tbody>
</table>

De esta forma, existe un marco legal específico para la CRT en materia de saneamiento de aguas que cruzan de un país a otro. La problemática ambiental asociada a la contaminación del agua, ya sea a través de las aguas residuales de la ciudad de Tijuana, así como las pluviales que en época de invierno escurren de México a Estados Unidos, son consideradas para que en común acuerdo ambas partes aporten conocimiento técnico y recursos financieros para la solución de problemas afines.

A principios de la década de 1990’as, ambos países reconocieron los nuevos arreglos institucionales en materia ambiental, aceptando plenamente el ambiente global compartido, así como la necesidad de incluir nuevos actores en el proceso de la toma de decisiones en cuestiones ambientales. En este sentido, las innovaciones institucionales más importantes son:

a. La Comisión de Cooperación Ecológica Transfronteriza (COCEF), creada en 1993 por los gobiernos de México y Estados Unidos, en el Marco del Tratado de Libre Comercio de América del Norte (TLCAN). El cometido de la COCEF es apoyar el mejoramiento de las condiciones ambientales de la región fronteriza México-Estados Unidos, con el fin de impulsar el bienestar de los habitantes de ambos países.

t. El Banco de Desarrollo de América del Norte (BDAN), creado como institución independiente junto con la COCEF desde 1993, ofrece financiamiento directo en la forma de recursos crediticios no reembolsables a entidades públicas y privadas para la ejecución de sus proyectos y asegura la viabilidad financiera de los mismos durante el proceso de desarrollo.

Las iniciativas en las que colaboran tanto la COCEF como el BDAN en la actualidad están relacionados con proyectos de alcantarillado, saneamiento, distribución de agua potable, plantas potabilizadoras, plantas desaladoras, calidad de aire, desechos sólidos, etc. Con base a sus objetivos de origen, es decir, mejorar la calidad de vida de los

67
habitantes de la zona fronteriza entre ambos países, así como la protección ambiental, la región de influencia de
estos dos organismos son los estados fronterizos de México (Baja California, Sonora, Chihuahua, Coahuila, Nuevo
León y Tamaulipas) y de Estados Unidos (California, Arizona, Nuevo México y Texas).

Para cumplir con los objetivos de los acuerdos binacionales en materia de cooperación ambiental, cada país
fundamente sus acciones en diferentes instituciones cabeza de sector, es decir, instituciones responsables de aplicar
la política ambiental federal. De esta forma se tiene que para el caso de México, la Secretaría de Medio Ambiente y
Recursos Naturales (SEMARNAT) es la dependencia del gobierno federal encargada de impulsar la protección,
restauración y conservación de los ecosistemas y recursos naturales y bienes y servicios ambientales del país, con el
objetivo de propiciar su aprovechamiento y desarrollo sustentable.

En materia de recursos hídricos, el manejo del agua corresponde a la Comisión Nacional del Agua (CONAGUA), órgano
administrativo desconcentrado de la SEMARNAT, con funciones de derecho público en materia de gestión de las aguas
nacionales y sus bienes públicos inherentes, con autonomía técnica, ejecutiva, administrativa, presupuestal y de
gestión, para la consecución de su objeto, la realización de sus funciones y la emisión de los actos de autoridad (Ley
de Aguas Nacionales, última reforma 2016).

La CONAGUA tiene como objeto principal “ejercer las atribuciones que le corresponden a la autoridad en materia
hídrica y constituirse como el órgano superior con carácter técnico, normativo y consultivo de la Federación, en
materia de gestión integrada de los recursos hídricos, incluyendo la administración, regulación, control y protección
del dominio público hídrico”. La CONAGUA se organiza en dos modalidades: 1) nivel nacional, y 2) nivel regional
hidrológico-administrativo, a través de sus Organismos de Cuenca.

En el ámbito de las cuencas hidrológicas, regiones hidrológicas y regiones hidrológico-administrativas, el ejercicio de
la autoridad en la materia y la gestión integrada de los recursos hídricos, incluyendo la administración de las aguas
nacionales y de sus bienes públicos inherentes, la CONAGUA las realizará a través de Organismos de Cuenca de índole
gubernamental y se apoyará en Consejos de Cuenca de integración mixta (gobierno, usuarios del agua, grupos
sociales, etc.). La Ley de Aguas Nacionales establece que los Organismos de Cuenca deben de trabajar de manera
armónica con los Consejos de Cuenca para lograr una gestión integral del agua.

En la escala regional, el 07 de diciembre de 1999 se instaló el Consejo de Cuenca Baja California y Municipio de San
Luis Río Colorado Sonora en la Ciudad de Mexicali, B.C., como instancia de coordinación y apoyo entre la CONAGUA y
las dependencias federales, estatales o municipales, así como los representantes de los usuarios de aguas, con
objeto de formular y ejecutar programas y acciones para una mejor administración de los recursos hídricos (ver
FIGURA 1). En este consejo se incluye un departamento de asuntos fronterizos que trata los temas de descargas y
tratamiento de aguas, así como los asuntos relacionados con la frontera.
Los objetivos de los Consejos de Cuenca son:

1. Formular y ejecutar programas y acciones para el mejor ordenamiento y regulación de la distribución y aprovechamiento de las aguas superficiales y subterráneas, en todo aquello que no sea de la exclusiva competencia de la Comisión Nacional del Agua.

2. Fomentar el cuidado y el saneamiento de las aguas de la cuenca y la vigilancia y control de su calidad.
3. Promover el uso eficiente de las aguas superficiales y subterráneas de la cuenca y de su infraestructura, alentando la ejecución de programas para su aprovechamiento racional, e impulsando el tratamiento y reutilización de las aguas residuales.

4. Promover la conservación de cuerpos de agua y corrientes dentro de la cuenca.

5. Promover el reconocimiento del valor ambiental, social y económico del agua y el aprovechamiento y uso sustentable de los recursos naturales de la cuenca (CONAGUA, 2014).

Por lo que respecta al nivel estatal, la Comisión Estatal del Agua de Baja California (CEA), es un organismo paraestatal cuyas funciones son planear y coordinar las acciones pertinentes para que la población cuente con la infraestructura hidráulica necesaria, así como normar, organizar y ejecutar la política de agua en bloque en Baja California. La CEA fue creada por decreto estatal en 1999 y desde ese momento se trabaja en coordinación con los organismos operadores del agua para los municipios, que son los organismos responsables de llevar el agua hasta los usuarios así como el tratamiento de aguas residuales urbanas.

En el nivel local, la Comisión Estatal de Servicios Públicos de Tijuana (CESPT) y la Comisión Estatal de Servicios Públicos de Tecate (CESPTE) son organismos públicos descentralizados del Gobierno del Estado, con personalidad jurídica, patrimonio propio y responsable por la prestación de los servicios de agua potable, alcantarillado y saneamiento. De esta forma, estos dos organismos operadores del agua en estos municipios, son los responsables de conducir el agua potable y su saneamiento a los habitantes de Tijuana y Tecate.

En lo que corresponde a las instituciones en Estados Unidos, la EPA es la encargada de tratar los asuntos en materia ambiental, trabaja con otras agencias federales, estados, territorios estadounidenses, tribus y comunidades locales, para mejorar la salud de familias y proteger el ambiente en Estados Unidos. La EPA depende directamente de la Oficina Ejecutiva del Presidente de Estados Unidos. A nivel regional y local, la instancia que administra el aprovechamiento del agua es San Diego County Water Authority y San Diego Regional Water Quality Control Board, que tienen como misión proporcionar un suministro seguro y confiable de agua a sus agencias que sirven a la región de San Diego, California.

San Diego County Water Authority (SDCWA) es el organismo que adquiere, compra o importa grandes volúmenes de agua (mayorista) y posteriormente la vende a sus 24 agencias-usuarios. Estos usuarios son: seis ciudades, cinco distritos de agua, tres distritos de riego, ocho distritos municipales, un distrito público y una agencia federal (base militar). El SDCAW es una agencia pública independiente encargada de distribuir el agua regional en el condado de San Diego, no es parte del gobierno de la ciudad o del condado. La FIGURA 2 muestra la organización del SDCWA.
Una diferencia importante que se observa en cuanto a la administración de los recursos hídricos en ambos países, es que en el caso de México, el agua es un bien de la Nación, donde participan instituciones federales, estatales y municipales, especialmente en la dotación a los usuarios del agua urbanos, mientras que en Estados Unidos el modelo para el manejo del agua se asemeja más a una compañía privada, donde intervienen varios actores, sobretodo a nivel estatal y local. Lo anterior sin duda refleja formas diferentes de administrar el recurso agua entre la población.

A manera de sintetizar el número de instituciones de los gobiernos de ambos países, que tienen responsabilidad con algún uso del agua (ya sea como recurso natural o como servicio público), el CUADRO 21 presenta las instancias que tienen algún tipo de injerencia en el uso y cuidado de los recursos hídricos de la Cuenca del Río Tijuana.

CUADRO 21 Organismos e instituciones involucradas en el manejo de los recursos naturales en la Cuenca del Río Tijuana

<table>
<thead>
<tr>
<th>Nivel</th>
<th>México</th>
<th>Estados Unidos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binacional</td>
<td>Comisión Internacional de Límites y Aguas / International Boundary and Water Commission</td>
<td>Banco de Desarrollo de América del Norte / North American Development Bank</td>
</tr>
<tr>
<td></td>
<td>Comisión de Cooperación Ecológica Transfronteriza / The Border Environment Cooperation Commission</td>
<td>U. S. Environmental Protection Agency</td>
</tr>
<tr>
<td>Federal</td>
<td>Secretaría de Relaciones Exteriores</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: elaboración propia, con datos de The San Diego County Water Authority, en https://www.sdcwa.org/organization, consultado el 9 de marzo de 2018.
Un organismo que trabaja directamente para la solución de los problemas ambientales en la CRT es Tijuana River Valley Recovery Strategy (TRVRS). Un tema prioritario para TRVRS es la calidad del agua río Tijuana, y en particular dedica sus esfuerzos al saneamiento del agua que cruza la línea internacional enfocándose en la reducción de los residuos sólidos y otros sedimentos que cruzan la línea internacional a través del río. Debido a que la solución de la problemática del agua en la CRT involucra a ambos países, los trabajos de TRVRS se orientan a la participación social, gubernamental e institucional de los habitantes de la cuenca.

FOTOGRAFÍA 37 Campaña de limpieza del cauce del río Tijuana, San Diego, California

Otros acuerdos y programas binacionales

Por varias décadas después de la firma del Tratado de 1944, ambos países no estuvieron directamente involucrados en los asuntos ambientales y de agua en la región fronteriza. A mediados de la década de 1980’s surgieron en la frontera una serie de problemas ambientales combinados con un sentido de alerta sobre los asuntos de agua, lo que hizo que ambos gobiernos pensaran en nuevos mecanismos de acción para resolver la situación.

A partir de 1983 ambos países inician una serie de programas bilaterales y medidas complementarias para enfrentar la crisis ambiental fronteriza. De esta manera se establece el Convenio de La Paz, con la idea de “constituir el marco legal para prevenir, reducir y eliminar fuentes contaminantes de aire, agua y suelo, dentro de una franja de 100 kilómetros de ancho a ambos lados de la línea fronteriza” (Cohen y Flores, 2010). Dicho convenio es la base para la cooperación binacional en la región fronteriza en donde la SEMARNAT y la EPA fungen como Coordinadores Nacionales para las acciones implementadas.

Desde el Convenio de La Paz se crearon cuatro grupos de trabajo entre lo que se llamaba en ese entonces la Secretaría de Desarrollo Urbano y Ecología, en México, y la EPA de Estados Unidos (SEDUE/EPA), que desarrollaron procedimientos para enfrentar los principales problemas, como son: el manejo del agua, el de los residuos peligrosos, la calidad del aire y la cooperación binacional ante eventuales urgencias químicas. Esta fue la primera vez que la problemática se trató mediante comisionados gubernamentales y se reconoció la corresponsabilidad necesaria en lo ambiental (Gasca, 2001 en Velázquez, 2007). En el marco de este instrumento, se firmaron cinco anexos que presentan los problemas prioritarios de la frontera norte, entre ellos destaca el Saneamiento de San Diego, California y Tijuana, Baja California (ver CUADRO 22).

CUADRO 22 Principales tratados, convenios y programas binacionales México-Estados Unidos en materia ambiental

<table>
<thead>
<tr>
<th>Acuerdos</th>
<th>Año</th>
<th>Objetivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratado de 1944</td>
<td>1944</td>
<td>Establecer el criterio de distribución de las aguas para cada país y el</td>
</tr>
<tr>
<td></td>
<td></td>
<td>orden de prioridad para el uso de las aguas</td>
</tr>
</tbody>
</table>

2 En 1990, la región fronteriza tenía 11.8 millones de habitantes (5.5 en México y 6.3 en Estados Unidos). Alrededor de 80% de las maquiladoras mexicanas se ubican a lo largo de la franja fronteriza; en 1990 eran 1,700 aproximadamente y en para 2000 sumaban 3,800. La industria maquiladora ha generado crecimiento económico al país pero también han provocado una serie de problemas ambientales por la producción de gases y la generación de residuos; en 1990 la mitad de las maquiladoras generaban desechos tóxicos. Del total de dichas empresas, solo 347 eran reguladas por la legislación ambiental vigente, y únicamente 200 cumplían con toda la normatividad ambiental (Gasca, 2001 en Velázquez, 2007).
<table>
<thead>
<tr>
<th>Convenio de La Paz</th>
<th>1983</th>
<th>Establecer las bases para la cooperación, mejoramiento y conservación del medioambiente y los problemas que lo afecten, así como acordar las medidas necesarias para prevenir y controlar la contaminación en la zona fronteriza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan Ambiental Integral Fronterizo</td>
<td>1992</td>
<td>Fortalecer la cooperación continua entre México y los Estados Unidos para el mejoramiento del ambiente en la zona fronteriza</td>
</tr>
<tr>
<td>Frontera XXI</td>
<td>1996</td>
<td>Promover el desarrollo sustentable en la región fronteriza a través de la búsqueda de un balance entre los factores económicos y sociales de la protección al ambiente en las comunidades fronterizas y en las áreas naturales.</td>
</tr>
<tr>
<td>Programa 2012</td>
<td>2003</td>
<td>Atender los desafíos en materia de medio ambiente y salud pública fronteriza</td>
</tr>
<tr>
<td>Programa 2020</td>
<td>2012</td>
<td>Mejorar las condiciones ambientales en comunidades marginadas y poblaciones sensibles mediante el cumplimiento de sus cinco metas estratégicas y sus objetivos asociados</td>
</tr>
</tbody>
</table>

FUENTE: elaboración propia.

En el marco del Convenio de La Paz se implementó una serie de programas para abordar los problemas ambientales más graves en la zona fronteriza. En 1992, El Plan Ambiental Integral Fronterizo (PIAF) fue el primer programa entre las autoridades ambientales de México y Estados Unidos, que se fundamentó en la idea de que el crecimiento económico a largo plazo no es posible sin la protección al medio ambiente, y que ésta última solo es viable dentro de un proceso sostenido de crecimiento económico.

Con respecto al Programa Frontera XXI (1996), se adicionaron tres grupos de trabajo (información ambiental, recursos naturales y salud ambiental) donde, al igual que el PIAF, fueron pioneros en el establecimiento de los temas ambientales como prioritarios en la agenda bilateral; de igual forma fundó los cimientos para el establecimiento del Programa Ambiental México-Estados Unidos: Frontera 2012 (EPA- SEMARNAT, 2012).

En el año 2003 se negoció e inició el Programa Frontera 2012 con participación de todos los estados fronterizos, las comunidades y pueblos indígenas mexicanos de la región fronteriza y las naciones tribales fronterizas de Estados Unidos. En el Programa Frontera 2012 destaca como punto clave la participación pública de las comunidades locales y la información transparente, oportuna, accesible y precisa. Por último, el programa se compromete a lograr resultados concretos y medir los avances a través de indicadores ambientales y de salud pública.

Bajo el Programa Frontera 2012 se estableció el Grupo de Trabajo de la Cuenca del Río Tijuana, que mediante reuniones regulares está abordando temas de la Cuenca de mutuo interés para ambos países. Inicialmente, este grupo de trabajo formó parte de un esfuerzo originado por distintas instituciones, como las universidades locales de ambos países (Universidad Estatal de San Diego, El Colegio de la Frontera Norte y la Universidad Autónoma de Baja California), agencias gubernamentales, grupos ecologistas, grupos tribales, y otros actores interesados en el desarrollo conceptual de un plan de manejo para la CRT.

En el año 2012, el Programa Ambiental México-Estados Unidos: Frontera 2020 representó la continuidad de un esfuerzo binacional que tiene como objetivo atender los desafíos que en materia de medio ambiente y salud pública fronteriza. Marca el inicio de ocho años de esfuerzo conjunto entre los diferentes actores para mejorar la salud pública y ambiental de la frontera, integrando seis estrategias fundamentales: crear capacidades sobre cambio...
climático; proteger comunidades marginadas; mejorar la salud infantil; fortalecer la cultura ambiental; promover la salud ambiental; y el fortalecimiento de la cooperación federal, estatal, local, tribal e internacional (EPA- SEMARNAT, 2012).

En uno de los objetivos del Programa Frontera 2020 se señala la importancia de implementar estudios para disminuir la problemática de sedimentos y basura en el Río Tijuana. En particular, se destaca que “cada dos años, se deberá identificar e implementar al menos un proyecto para la reducción de niveles de bacterias, sedimentos y/o basura que llegan al río Tijuana. Algunos ejemplos de proyectos potenciales incluyen la demarcación de los terrenos federales en las planicies aluviales para prevenir los asentamientos irregulares, establecer servidumbres de conservación, uso de mejores prácticas de gestión para el control de sedimentos y programas de prevención y limpieza de basura” (Epa- Semarnat, 2012).

Legislación federal

En México la Constitución Política de los Estados Unidos Mexicanos (1917), establece en el Art. 27 la “propiedad de las tierras y aguas comprendidas dentro de los límites del territorio nacional, corresponde originalmente a la Nación, la cual ha tenido y tiene el derecho de transmitir el dominio de ellas a los particulares, constituyendo la propiedad la propiedad privada”. Con respecto a los recursos subterráneos en el Párrafo 5°, establece que los “recursos naturales del subsuelo son del dominio de la Nación. El agua subterránea puede ser libremente alumbrada hasta que se establezca una veda, reserva o reglamento por causas de interés público”.

Por su parte, la Ley General del Equilibrio Ecológico y la Protección al Ambiente (LGEEPA, 1988) y sus reglamentos, son los principales instrumentos jurídicos de protección ambiental, referente a la preservación y restauración del equilibrio ecológico en el territorio mexicano. Asimismo, establece que es atribución de los Estados y los Municipios crear su propio marco normativo de acuerdo a las necesidades locales, tal y como ocurre en materia del manejo del agua en los estados y municipios.

La LGEEPA en su Art. 1°, establece que tiene por objeto propiciar el desarrollo sustentable y establecer las bases para... “garantizar el derecho de toda persona a vivir en un medio ambiente sano para su desarrollo, salud y bienestar; la prevención y el control de la contaminación del aire, agua y suelo, entre otras”. Con respecto la contaminación del agua, en su Art. 117 establece que considerarán los siguientes criterios:

1. La prevención y control de la contaminación del agua, es fundamental para evitar que se reduzca su disponibilidad y para proteger los ecosistemas del país;

34. Corresponde al Estado y la sociedad prevenir la contaminación de ríos, cuencas, vasos, aguas marinas y demás depósitos y corrientes de agua, incluyendo las aguas del subsuelo;
35. El aprovechamiento del agua en actividades productivas susceptibles de producir su contaminación, conlleva la responsabilidad del tratamiento de las descargas, para reintegrarla en condiciones adecuadas para su utilización en otras actividades y para mantener el equilibrio de los ecosistemas;

36. Las aguas residuales de origen urbano deben recibir tratamiento previo a su descarga en ríos, cuencas, vasos, aguas marinas y demás depósitos o corrientes de agua, incluyendo las aguas del subsuelo; y

37. La participación y corresponsabilidad de la sociedad es condición indispensable para evitar la contaminación del agua.

De igual manera existe una serie de leyes y normas técnicas específicas para la protección y conservación del agua, salud y vida silvestre (ver CUADRO 23). La SEMARNAT expide las Normas Oficiales Mexicanas (NOM) del sector ambiental para establecer las características y especificaciones, criterios y procedimientos, que permitan proteger y promover el mejoramiento ambiental, así como la preservación de los recursos naturales.

CUADRO 23 Principales leyes en materia de protección ambiental en México

<table>
<thead>
<tr>
<th>Leyes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constitución Política de los Estados Unidos Mexicanos</td>
</tr>
<tr>
<td>Ley General del Equilibrio Ecológico y la Protección al Ambiente</td>
</tr>
<tr>
<td>Ley Nacional de Aguas</td>
</tr>
<tr>
<td>Ley General de Asentamientos Humanos</td>
</tr>
<tr>
<td>Ley General para la Prevención y Gestión Integral de los Residuos</td>
</tr>
<tr>
<td>Ley General de Vida Silvestre</td>
</tr>
<tr>
<td>Ley General De Desarrollo Forestal Sustentable</td>
</tr>
<tr>
<td>Ley General de Cambio Climático</td>
</tr>
<tr>
<td>Ley General de Protección Civil</td>
</tr>
<tr>
<td>Ley Federal de Pesca y Acuacultura Sustentables</td>
</tr>
<tr>
<td>Ley de la Agencia Nacional de Seguridad Industrial y de Protección al Medio Ambiente del Sector Hidrocarburos</td>
</tr>
<tr>
<td>Ley de Vertimientos en las Zonas Marinas Mexicanas</td>
</tr>
<tr>
<td>Ley de Responsabilidad Ambiental</td>
</tr>
<tr>
<td>Ley de Bioseguridad de Organismos Genéticamente Modificados</td>
</tr>
</tbody>
</table>

FUENTE: elaboración propia.

En cuanto al tema específico de administración del agua, la Ley de Aguas Nacionales en su Art. 4° indica que corresponde al Ejecutivo Federal la autoridad y administración en materia de aguas nacionales y de sus bienes públicos inherentes, quien la ejercerá directamente a través de la Comisión Nacional del Agua (CONAGUA). La Ley señala en su Art. 6° que compete al Ejecutivo Federal:

I. Reglamentar por cuenca hidrológica y acuífero, el control de la extracción así como la explotación, uso o aprovechamiento de las aguas nacionales del subsuelo ...; y expedir los decretos para el establecimiento, modificación o supresión de zonas reglamentadas que requieren un manejo específico para garantizar la sustentabilidad hidrológicas o cuando se comprometa la sustentabilidad de los ecosistemas vitales en áreas determinadas en acuíferos, cuencas hidrológicas, o regiones hidrológicas;

II. Expedir los decretos para el establecimiento, modificación o supresión de zonas de veda de aguas nacionales...;
III. Expedir las declaratorias de zonas de reserva de aguas nacionales superficiales o del subsuelo, así como los decretos para su modificación o supresión;

IV. Expedir por causas de utilidad pública o interés público, declaratorias de rescate, en materia de concesiones para la explotación, uso o aprovechamiento de Aguas Nacionales, de sus bienes públicos inherentes…;

V. Expedir por causas de utilidad pública o interés público, declaratorias de rescate de concesiones otorgadas por "Conagua", para construir, equipar, operar, conservar, mantener, rehabilitar y ampliar infraestructura hidráulica federal y la prestación de los servicios respectivos, mediante pago de la indemnización que pudiere corresponder;

VI. Expedir por causas de utilidad pública los decretos de expropiación, de ocupación temporal, total o parcial de los bienes, o su limitación de derechos de dominio, en los términos de esta Ley, de la Ley de Expropiación y las demás disposiciones aplicables, salvo el caso de bienes ejidales o comunales en que procederá en términos de la Ley Agraria;

VII. Aprobar el Programa Nacional Hídrico, conforme a lo previsto en la Ley de Planeación, y emitir políticas y lineamientos que orienten la gestión sustentable de las cuencas hidrológicas y de los recursos hídricos;

VIII. Adoptar las medidas necesarias para el cumplimiento de acuerdos y convenios internacionales en materia de aguas, tomando en cuenta el interés nacional, regional y público;

IX. Nombrar al Director General de "la Comisión" y al Director General del Instituto Mexicano de Tecnología del Agua;

X. Establecer distritos de riego o de temporal tecnificado, así como unidades de riego o drenaje, cuando implique expropiación por causa de utilidad público

De esta manera México cuenta con un amplio marco legal que establece las formas, instancias y mecanismos para la protección y administración de los recursos hídricos del país, siendo la Nación y el interés público los que determinan la explotación del agua en las cuenca hidrográficas del país. A pesar de ello, y quizás a su condición de ser un bien de la Nación, que le ha representado el desafío para su manejo ambientalmente adecuado y sustentable en un gran número de regiones, incluyendo la Cuenca del Río Tijuana.

Por lo que respecta a la legislación en materia de recursos hídricos en Estados Unidos, ésta se presenta un tanto diferente al caso de México. En Estados Unidos existe una serie de Leyes y reglamentos que restringen los impactos adversos al ambiente, incluyendo al aire, agua, tierra, recursos culturales y socioeconómicos. A diferencia de México, los estados pueden ejercer jurisdicción sobre los recursos dentro de sus límites y, a menos que se enfrenten a un exitoso reto de prioridad federal, son libres de legislar y ejercer su poder judicial sobre el mismo recurso, así como el gobierno federal regula dentro de sus límites (Robissons y Durkley en Lascurain, 2010).

La Ley Nacional de Política Ambiental (National Environmental Policy Act) firmada en 1970, no se aplica en los Estados federados ni a los ciudadanos particulares. Detalla el proceso de toma de decisiones y las formas de actuación que el Gobierno y las agencias federales deben tener en cuenta en sus resoluciones cuando éstas puedan tener repercusiones sobre los recursos naturales. En la Sección 2, párrafo 4321 se afirma que el propósito de la ley es: “Declarar una política nacional que estimule la armonía productiva y agradable entre el hombre y su ambiente, promover esfuerzos que eviten o mitiguen daños en el ambiente y la biosfera, promuevan la salud y el bienestar del
hombre, enriquecer la valoración de los ecosistemas y los recursos naturales importantes para la nación y establecer un Consejo de Calidad Ambiental” (Fernández-Rubio, s/f).

Debido a las diferencias en los conceptos de la ley en los estados americanos, es difícil centrarse en asuntos de la ley de aguas en los estados fronterizos. La Doctrina Ribereña es la regla original y predominante de la Ley de Agua en Estados Unidos que emana de la Ley Común de Propiedad y es aplicada en la mayoría de los estados americanos, incluyendo el de California. Esta ley permite disposiciones ilimitadas de agua o lo que se conoce como el concepto de propiedad absoluta. El CUADRO 24 muestra la legislación en materia de protección ambiental y de agua de Estados Unidos.

CUADRO 24. Legislación en materia de protección ambiental del agua en Estados Unidos

<table>
<thead>
<tr>
<th>Leyes</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Environmental Policy Act (NEPA)</td>
</tr>
<tr>
<td>Federal Clean Water Act</td>
</tr>
<tr>
<td>Safe Drinking Water Act</td>
</tr>
<tr>
<td>Statutory Water Rights Laws</td>
</tr>
<tr>
<td>Habitat Conservation Plan (HCP)</td>
</tr>
<tr>
<td>National Historic Preservation Act (NHPA),</td>
</tr>
<tr>
<td>Endangered Species Act (ESA)</td>
</tr>
</tbody>
</table>

FUENTE: elaboración propia.

Legislación estatal

El 29 de Febrero de 1992, se publicó la Ley del Equilibrio Ecológico y Protección al Ambiente del Estado de Baja California, donde menciona en su Art. 1° que las disposiciones son de orden público e interés social y tienen por objeto establecer las bases para garantizar el derecho de toda persona a gozar de un ambiente adecuado para su desarrollo, salud y bienestar y vigilar el cumplimiento del deber que tiene toda persona de proteger el ambiente; así como aprovechar en forma sustentable los recursos naturales e incrementar la calidad de vida de la población, entre otros temas. Asimismo para dar cumplimiento a lo que establece dicha Ley, se instituyó la Dirección General de Ecología de Gobierno del Estado el 2 de marzo de 1992, teniendo como objetivo la protección ambiental de la entidad, a través de estrategias y acciones que involucran a los diferentes sectores de la sociedad y gobierno.

En materia de legislación del agua en el estado, la Ley del Agua para el Estado de Baja California, publicada en el Periódico Oficial del 30 de diciembre de 2016, establece en su Artículo 1° que “…sus disposiciones son de orden público e interés social y regulan la explotación, uso, aprovechamiento, administración, control y suministro de las aguas de jurisdicción estatal, así como de las obtenidas mediante concesiones o asignaciones otorgadas por la Federación; el control y valoración de los recursos hídricos y la conservación, protección y preservación de su cantidad y calidad, así como la prestación de los servicios de agua potable, drenaje y alcantarillado y saneamiento”.

De igual manera, en su Artículo 3° menciona que “son aguas de jurisdicción estatal:
1. Las aguas residuales tratadas que lo hayan sido en plantas de tratamiento estatales, operadas y mantenidas por el Estado, o bien por particulares contratados por el Ejecutivo Estatal o sus entidades paraestatales;

2. Las aguas producto del tratamiento de desalación de agua de mar, y

3. En general, aquellas aguas que de conformidad con el párrafo quinto del artículo 27 de la Constitución Política de los Estados Unidos Mexicanos, no pueden ser consideradas propiedad de la Nación ni reglamentadas como aguas nacionales, y que siendo consideradas como parte integrante de la propiedad de los terrenos por los que corran o en los que se encuentren sus depósitos, se localizaren en dos o más predios y que la misma Constitución Federal considera sujetas a las disposiciones que dicten los Estados y las que sean asignadas por la autoridad competente, a favor de cualquier entidad municipal o estatal en Baja California incluyendo las concesionadas para uso público urbano”.

Sin embargo, en el mes de 2017 esta Ley fue abrogada debido a la fuerte presión pública en los cinco municipios que conforman el estado donde se argumentaba, entre otras cosas, que ésta favorecía la privatización del recurso hídrico en el estado y que era injusta para los habitantes de Baja California (El Universal, 2017). Hoy en día sigue la discusión sobre el aumento en las tarifas del agua, tanto en Tijuana como en Mexicali, los dos municipios con el mayor número de usuarios del agua.

De cualquier forma, la legislación estatal en materia de agua pretendía ser complementaria a la Ley de Aguas Nacionales, teniendo el cuidado de no traslapar de jurisdicción, ya sea del federal o el estatal. Con ello se establecen diferencia de actuación tanto de la CONAGUA como de la Comisión Estatal del Agua (CEA). De esta forma, el CUADRO 25 muestra la legislación estatal en materia de protección ambiental.

CUADRO 25 Legislación estatal aplicable a la protección ambiental en Baja California

<table>
<thead>
<tr>
<th>Leyes y reglamentos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constitución Política del Estado de Baja California</td>
</tr>
<tr>
<td>Ley de Protección al Ambiente para el Estado de Baja California</td>
</tr>
<tr>
<td>Ley Estatal de Planeación</td>
</tr>
<tr>
<td>Ley de Desarrollo Urbano del Estado</td>
</tr>
<tr>
<td>Ley de Prevención y Gestión Integral de Residuos</td>
</tr>
<tr>
<td>Ley de Desarrollo Forestal Sustentable</td>
</tr>
<tr>
<td>Ley de Prevención, Mitigación y Adaptación del Cambio Climático</td>
</tr>
<tr>
<td>Ley de Derechos y Cultura Indígena</td>
</tr>
<tr>
<td>Ley de Desarrollo Agropecuario</td>
</tr>
<tr>
<td>Ley de Energías Renovables</td>
</tr>
<tr>
<td>Ley de Pesca y Acuacultura Sustentable</td>
</tr>
<tr>
<td>Ley de Salud Pública</td>
</tr>
<tr>
<td>Reglamento Aire-Agua-Atmosfera</td>
</tr>
<tr>
<td>Reglamento de Impacto Ambiental</td>
</tr>
</tbody>
</table>

FUENTE: elaboración propia.
Por su parte, la administración del agua en Estados Unidos es compartida, ya sea la superficial o la subterránea, entre el nivel federal, encabezada por la Agencia de Protección Ambiental (EPA), y por las instituciones estatales y locales de los estados, donde los ciudadanos y otros usuarios del agua tienen un peso importante en la toma de decisiones. Para ello, la Ley de Agua Limpia (Clean Water Act, CWA) es el máximo instrumento jurídico a nivel federal que regula la calidad y saneamiento de agua para los diferentes usos, la CWA fue establecida desde 1972 con modificaciones en 1977.

A nivel estatal, el Plan de Agua de California (California Water Plan-CWP), es el instrumento estratégico del estado para la gestión y desarrollo de los recursos hídricos para las generaciones actuales y futuras de manera sostenible. El CWP sustenta sus directrices en el Código de Agua Sección 10005(a), por lo que incluye la situación y las tendencias de los recursos de naturales dependientes del agua de California; suministros de agua; y demanda de agua agrícola, urbano y ambiental para una gama de escenarios futuros posibles. Para la operación de la política hídrica, se cuenta con el California Water Action Plan, el cual delimita los derechos y obligaciones de los usuarios del agua en el estado con un enfoque sustentable. Este Plan se actualiza cada cinco años.

Adicionalmente, a nivel de condado y dependiente de la EPA, San Diego Regional Water Quality Control Board es la instancia de preservar y restaurar la calidad de los recursos hídricos y del agua potable para la protección del ambiente, la salud pública y beneficios para todos sus usuarios.

Nivel municipal

A nivel municipal en la Cuenca del Río Tijuana, son los organismos operadores del agua como la Comisión Estatal de Servicios Públicos del Agua de Tijuana y Tecate (CESPT y CESPTE respectivamente), las instancias responsables por brindar el servicio de agua y saneamiento a la población de sus municipios, para ello, cuentan con un Consejo de Administración integrado por el Gobernador del Estado o su representante, el Secretario de Infraestructura y Desarrollo urbano del Estado, Secretario de Finanzas del Estados, los presidentes Municipales de Tijuana y Tecate, dos representantes de la iniciativa privada y un representante ciudadano. La función de este consejo es revisar y aprobar el programa y presupuesto anual de gastos y balance, antes de ser sometido al Congreso del Estado para su aprobación definitiva; autorizar y dar seguimiento a algunos programas y proyectos de estos organismos (CESPT, 2017; CESPTE, 2017).

La red de drenaje pluvial es otro aspecto que se administra a nivel municipal, contando la ciudad de Tijuana con una red de 20.9 km. de longitud entre canales a cielo abierto, conductos cerrados y tanques desarenadores, que actualmente cuenta con 28 tanques con una capacidad de retener hasta 105,015 m3 de azolve. El objeto de los tanques desarenadores es la retención de sólidos que pueden ser arrastrados por las crecidas de los arroyos en temporada de lluvias.
Bibliografía

CILA, 2015, Acta 320. Marco general para la cooperación binacional en los asuntos transfronterizos de las cuenca del Río Tijuana, Comisión Internacional de Límites y Aguas, Tijuana, B.C.

Cohen, Miriam Alfie y Óscar Flores Jáuregui, 2010, Las agencias ambientales binacionales de México y Estados Unidos: Balance y perspectiva a dieciséis años de su creación, Norteamérica, año 5, número 1, enero-junio, pp. 129-172.

Conagua, 2015b, Actualización de la disponibilidad media anual de agua en el acuífero Tijuana (0201), Estado de Baja California, Comisión Nacional del Agua, Subdirección General Técnica, Gerencia de Aguas Subterráneas, publicado en el Diario Oficial de la Federación el 20 de abril de 2015, México, D.F.

CONAGUA, Gob. del Edo. de B.C., 2015, Acuerdo mediante el cual se Informa el Cumplimiento de uno de los Objetivos de la Mesa Técnica del Arroyo Alamar (MTAA), y se da Formalización del Proyecto Eco-hidrológico de la Tercera Etapa del “Arroyo Alamar”, Comisión Nacional del Agua, Gobierno del Estado de Baja California, Tijuana, B.C., 16 de Julio de 2015.

Gobierno del Estado de Baja California y Comisión Estatal del Agua, 2008, Programa Estatal Hídrico 2008-2013, Mexicali, B.C.

Gobierno del Estado de Baja California, 2010, Plan Estatal de Desarrollo Urbano, Secretaría de Infraestructura y Desarrollo Urbano, Mexicali, B.C.

Gobierno del Estado de Baja California, 2015, Programa Estatal de Protección al Ambiente de Baja California, 2015-2019, Mexicali, B.C.

Implan-Tijuana, 2015, Plan Estratégico Metropolitano Tijuana-Tecate-Playas de Rosarito, Ayuntamiento de Tijuana, Instituto Metropolitano de Planeación de Tijuana, Tijuana, B.C.

IRSC, 2005, Una visión binacional para la cuenca del Río Tijuana, Institute for Regional Studies of the Californias, Geography Department of the San Diego State University, San Diego, CA.

Michel, Suzanne M y Carlos Graizbord, 2002, Los ríos urbanos de Tecate y Tijuana: Estrategias para ciudades Sustentables, Institute for Regional Studies of the Californias, San Diego, California, USA.

Piñera, David y Jesús Ortiz, 1985, “Panorama de Tijuana 1930-1948”, en David Piñera Ramírez (coordinador), Historia de Tijuana. Semblanza General, Universidad Autónoma de Baja California, XI Ayuntamiento de Tijuana, Tijuana, B.C.

Rodríguez Esteves, Juan Manuel, 2007, La construcción social del riesgo de desastre en el noroeste de México: ENSO (Southern Oscillation) en la cuenca del Río Tijuana, tesis de doctorado, Centro de Investigaciones y Educación Superior en Antropología Social, Guadalajara, Jalisco.

San Diego State University and El Colegio de la Frontera Norte (eds), 2005, Tijuana River Watershed Atlas. Published by San Diego State University Press and el Institute for Regional Studies of the Californias. San Diego, CA. USA.

Semarnat, 2013, Cuencas hidrográficas. Fundamentos y perspectivas para su manejo y gestión, Secretaría de Medio Ambiente y Recursos Naturales, México, D.F.

Silva, Laurie Lynn y Celina Garcia, 2012, Participación social de las organizaciones de la sociedad civil en materia ambiental en Baja California, Programa de Educación, Capacitación y Comunicación de Baja California, documento de trabajo, diciembre.

2.1 EL RÉGIMEN DE LLUVIAS Y TEMPERATURAS

Juan Manuel Rodríguez Esteves

La precipitación total anual en la Cuenca del Río Tijuana (CRT) varía de 150 mm en la zona costera a 650 mm en las zonas montañosas elevadas; las temperaturas promedio varían de 8 a 18°C, aunque en las zonas montañosas se registran temperaturas menores a 0°C en los inviernos (Ganster, 2010:188). De manera puntual se tiene una precipitación acumulada promedio anual de 232 mm para el periodo de 1948 al 2016 en la estación climatológica de la Presa Rodríguez, ubicada al sureste de la ciudad de Tijuana y a una altitud de 137 msnm. En esta estación de han registrado precipitaciones acumuladas de 496 mm en el año de 1998; de 470 mm en 1993 y de 457 mm en 1978, representando los años con mayores registros (ver GRÁFICA 1).

En la estación La Puerta, al suroeste de la ciudad de Tecate, y a una altitud de 480 msnm, se tiene precipitaciones acumuladas promedio anual de 347 mm para el periodo de 1949 al 2016. Para esta estación 1983, 1978 y 1993 fueron los años con mayores precipitaciones ya que se registraron valores de 789, 754 y 745 mm respectivamente, lo que representa un aumento significativo respecto a la estación Presa Rodríguez (ver GRÁFICA 2). Un elemento a destacar entre estas dos estaciones es la altitud, por lo que se explica el porque se registran más lluvias en esta estación, además, en ambos casos existe una tendencia de incremento en los volúmenes acumulados promedio anuales.

Para el caso de la estación climática de El Hongo, en los límites orientales de la Cuenca del Río Tijuana, se ubica a 960 msnm y tiene un promedio de precipitación anual acumulada de 327 mm para el periodo de 1979 a 2016. A pesar de la diferencia de altitud con respecto a las dos estaciones anteriores, la diferencia de precipitación no es tan significativa, particularmente con la de La Puerta, debido a que se encuentra ubicada en una área de mesetas erosionables onduladas y el periodo de años con registros es menor a las dos anteriores. Para esta estación los años
más lluviosos fueron 1983, 1980 y 1993 con precipitaciones acumuladas de 693, 651 y 607 mm respectivamente, coincidiendo las tres estaciones durante 1993, año en los que se registraron importantes daños por las lluvias (ver GRÁFICA 3). Un elemento a destacar en la estación El Hongo es la tendencia negativa en sus precipitaciones acumuladas, por lo que las lluvias mayores a la media que se vienen presentando son menores año con año.

La precipitación acumulada anual es un indicador que muestra las características generales de una región, al determinar el tipo de clima que se presenta. Un indicador que debe considerarse en la planeación de los asentamientos humanos, infraestructura, actividad productiva, etc. lo representan las lluvias registradas en periodos de tiempo más cortos, por ejemplo, en 24 horas.

La GRÁFICA 4 presenta los registros de lluvias máximas en 24 hrs entre 1948 y 2016 para la estación Presa Rodríguez, destacando los años en que las lluvias superaron los 50 mm. Al respecto, han sido 14 años donde se han presentando lluvias intensas y que en casi todos los casos provocaron severos daños a la ciudad de Tijuana, así sucedió durante 2004, 2008 y en particular durante 1993, cuando se registraron lluvias intensas de 90, 87 y 86.9 mm respectivamente.
Con base en los datos de la GRAFICA 4, se podría inducir que de los 14 años en los que las lluvias máximas en 24 hrs., se muestra una tendencia de que cada 2.8 años en promedio se presenta una lluvias igual o mayor a los 50 mm. Esto no significa que las lluvias mayores a los 50 mm representen un riesgo a sufrir daños por inundaciones o por escorrentía, pero si debe llamar la atención para definir una estrategia para evitar emergencias en la ciudad de Tijuana. Sin embargo, resulta complicado poder hacer este tipo de inferencias ya que, según los datos presentados, desde el 2011 hasta el 2016 no se han presentado este tipo de lluvias.

En la ciudad de Tecate, la estación La Puerta registró lluvias intensas durante los años de 1993, 1995 y 1980, con valores de 125, 103 y 80 mm respectivamente. De nueva cuenta, tanto para Tecate como Tijuana, los registros de lluvias máximas en 24 hrs muestran una tendencia positiva o de aumento que deberá ser considerada en estudios específicos que involucren algún tipo de riesgo por amenazas hidrometeorológicas (ver GRAFICA 5).
Para esta estación climática existe en promedio un periodo de 2.9 años para que se presente una lluvia igual o mayor a los 50 mm en periodos de 24 hrs. Este comportamiento de presenta de igual manera en la estación climatológica de Tijuana, aunque en esta última no se han presentado con lluvias mayores a los 100 mm.

De las tres estaciones consideradas, El Hongo muestra una tendencia negativa en cuanto al registro de lluvias máximas en 24 hrs. La GRÁFICA 6 muestra las lluvias máximas a partir de los 50 mm destacando los años 1991, 1993 y 1980 con precipitaciones de 101, 98 y 92 mm respectivamente. Un elemento a destacar sobre los registros de precipitación tanto acumulada como máxima en 24 hrs con tendencia negativa para esta estación, es su ubicación en la parte alta de la Cuenca, lo que podría suponer en una reducción de lluvias en la zona de recarga de la Cuenca. El promedio de los períodos en que se presentan lluvias máximas en 24 hrs iguales o mayores a los 50 mm es de ligeramente mayor a las dos estaciones anteriores, ya que estas lluvias ocurren cada 3.6 años.

Por su parte la temperatura media es otra variable que determinada de manera importante los factores del clima en la Cuenca del Río Tijuana. La temperatura media en la estación Presa Rodríguez muestra un promedio de 18 °C anuales, valor que es superado a partir del mes de mayo cuando las temperaturas siguen ascendiendo hasta llegar a un promedio de 23 °C en el mes de agosto; mientras que en el mes de octubre descienden del promedio anual y llegando a los 14 °C en el mes de diciembre, ya en periodo de invierno. La GRÁFICA 7 muestra los valores de temperaturas máximas registradas en la estación Presa Rodríguez, donde se observa la variabilidad de máximas temperaturas por mes. De esta forma, las temperaturas máximas registradas en el mes de septiembre fueron de 45°C (en el año 2010) y de 32 °C (en el año 1965), lo que representa una variabilidad de 13°C en temperaturas máximas para ese mes durante el periodo 1948 y 2016.
GRÁFICA 7 Temperaturas máximas mensuales (en ºC) Estación Presa Rodríguez, Tijuana (1948-2016)

Fuente: elaboración propia con datos de la Conagua, 2017g.

Para la estación La Puerta, en Tecate, se presenta un comportamiento semejante a la estación anterior, pero su promedio anual es de 17 ºC, sobrepasando este valor en mayo, alcanzando un máximo en agosto con 24 ºC y descendiendo del promedio en el mes de noviembre, registrando temperaturas de invierno de 12 ºC en el mes de diciembre y enero. Con base a los datos de la GRÁFICA 8, las temperaturas máximas mensuales registradas en la estación La Puerta indican que durante el mes de agosto se registró la temperatura más alta con 47ºC (en 1985), y la mínima para el mismo mes fue de 27ºC (en 1977), es decir, una variabilidad de 20ºC que es mayor a la registrada en Tijuana, que es de 13ºC.

GRÁFICA 8 Temperaturas máximas mensuales (en ºC) Estación La Puerta, Tecate (1949-2014)

Fuente: elaboración propia con datos de la Conagua, 2017h.

Por último en la estación El Hongo, y por su propia altitud, se registran las temperaturas más extremas respecto a las dos anteriores, ya que su promedio es de 15.4 ºC anuales, con un máximo de 24.6 ºC en agosto y con mínimas mensuales de 8.5 y 8.7 ºC en diciembre y enero respectivamente. La GRÁFICA 9 indica las temperaturas máximas mensuales registradas en la estación El Hondo, al respecto, el mes con el mayor registro fue junio también con 47ºC.

89
(en el año 2000), una mínima de 32°C (en el año 1982). La variabilidad de máximas temperaturas para esta estación es de 15°C, ubicando sus promedios entre la estación de Tijuana y Tecate.

![Gráfica 9: Temperaturas máximas mensuales (en °C) Estación El Hongo, Tecate (1981-2016)](image)

Los valores de precipitación y temperatura muestran las características más importantes del clima de la Cuenca del Río Tijuana, que corresponde a los climas de las regiones semidesérticas del Hemisferio Norte, siendo dos elementos los que la definen de manera particular: su proximidad a la costa, lo que proporciona una atenuación de las temperaturas en la parte oeste de la cuenca y, por otro lado, su variedad de altitud, registrando alturas desde los 0 msnm hasta los 1,900 msnm, registrando altas temperaturas que hace que también se presenten altos valores de evaporación. Debido a sus “bajos” registros de precipitación, que no son suficientes para dotar de agua a su creciente población, éste recurso representa una limitante para su desarrollo, sin embargo, la cuenca posee una importante base productiva donde el agua es importada de otra cuenca, como se verá en la sección siguiente.

Impactos por eventos hidrometeorológicos

Lluvias intensas

Los principales impactos registrados por eventos hidrometeorológicos en la CRT son los efectos por lluvias intensas, los cuales afectan principalmente a los grandes asentamientos humanos, en particular a la ciudad de Tijuana, debido a que esta asentada en zonas de lomeríos (escorrentía) y zonas de poca pendiente la zona aledaña al Río Tijuana (encharcamientos). Las inundaciones, que incluye un amplio número de eventos como escorrentía, arroyada, inundación, encharcamientos, deslaves, etc. son eventos muy conocidos en la Crt, destacando los años 1980, 1983, 1993, 1998 y 2004 y 2008 (ver Gráfica 4).

Los efectos de las lluvias en Tijuana se manifiestan a través de deslaves de pendientes pronunciadas, como han ocurrido recientemente en el Cañón del Sainz durante el invierno 2015-2016, cuando se registraron daños como...
arrastre de vehículos, anegamiento de calles, deslaves y daños en viviendas debido a la introducción de agua en las plantas bajas. Este problema se presenta en buena parte de la ciudad donde se ubican cañones o laderas de cerros destacando las colonias Camino Verde, Chula Vista, Las Torres, Tres de Octubre, México Lindo, etc., colonias que han sido afectadas en los últimos 20 años (ver FOTOGRAFÍA 38 Y FOTOGRAFÍA 39).

FOTOGRAFÍA 38 Efectos de lluvias intensas en Tijuana

FOTOGRAFÍA 39 Crecida de arroyo en Tijuana

Las razones por las que se presentan daños por lluvias intensas, tanto en Tijuana como en Tecate, son varias y complejas, entre otras razones se debe a la ocurrencia puntual de las lluvias cuando éstas son superiores a los 50 mm en un periodo menor a las 24 hrs; para el caso particular de Tijuana, debido al reducido tamaño de las subcuencas donde se ubican las colonias afectadas, con superficies que del orden entre 10 y 20 km². Un elemento central en este punto es la invasión de la zona federal de los cauces, por lo que son comunes el daños a viviendas
por estar ubicadas próximas a las corrientes de arroyos en Tijuana y al Río Tecate. Finalmente, un elemento importante es la falta de infraestructura urbana para desalojar las aguas una vez que los suelos son saturados por las lluvias (drenaje pluvial, desarenadores, pozos de absorción, desazolve de obras ya construidas, etc.).

Para solucionar el problema de las inundaciones y desastres, con una visión de cuenca, en el año 2000 se conformó un comité técnico binacional que diseñó e implementó un sistema de alerta para las regiones de alto riesgo tanto en México como Estados Unidos, para dar información en tiempo real a las instituciones de protección civil de ambos países para prepararse y la toma de decisiones eficaz y oportuna. En años recientes Tijuana contaba con 10 pluviómetros para registrar la lluvia en la ciudad y determinar medidas de prevención y atención en caso de emergencia, estas estaciones eran operadas por la Dirección de Protección Civil de Tijuana.

Sequía

Los efectos de la sequía, éste es un evento común en el norte de México, y en especial en Baja California. Para el caso de las ciudades, el suministro de agua está garantizado por los aportes de agua del ARCT, pero los principales afectados por la sequía son los habitantes de las zonas rurales, ya que el suministro se basa en la extracción de agua subterránea para cubrir sus necesidades básicas y el riego de parcelas destinadas al cultivo, particularmente en el Valle de las Palmas, acuífero que se encuentra en equilibrio al estar en veda, al igual de los de Tijuana y Tecate, al contar con una recarga de 10.5 Mm3 y una extracción de 7.9 Mm3 (Programa Estatal Hídrico de Baja California, 2003-2007). Esta condición del acuífero cambio significativamente, al tener una sobreexplotación de 3.37 Mm3 para el año 2014 (CEABC, 2014).

El Atlas del Agua en México 2015 elaborado por la **CONAGUA**, establece que “La sequía es cuando las lluvias son significativamente menores a los niveles normales registrados, lo que ocasiona graves desequilibrios hidrológicos, que perjudican a los sistemas de producción agrícola. Cuando la lluvia es escasa e infrecuente y la temperatura aumenta, la vegetación se desarrolla con dificultad. Las sequías son los desastres naturales más costosos, pues afectan a más personas que ninguna otra forma de desastre natural” (CONAGUA, 2015).

La intensidad extrema de la sequía para noviembre de 2015 indicaban que la CRT enfrentaba retos importantes tanto para el abastecimiento de agua para uso urbano, agrícola y para el uso natural para los ecosistemas. El traer agua hacia las ciudades importantes de la Crt desde el Valle de Mexicali, hace pensar que las condiciones de sequía en la región no es un problema para los habitantes urbanos, pero es un problema crucial para los habitantes fuera de los centros urbanos, al limitar de una forma u otra el uso del recurso hídrico a partir de las lluvias.
La información que se presenta en el MAPA 9 hace referencia a un momento particular del año, es decir, el mes de febrero es, de manera general, la temporada de estiaje para la mayor parte del territorio nacional. Sin embargo, en la CRT es la temporada de lluvias, mismas que se presentan a partir del mes de noviembre. Para el 2018, no se habían presentado lluvias significativas en la Cuenca hasta el mes de febrero, de ahí que el MAPA 9 indica que la región experimentó una sequía moderada, evento hidrometeorológico que debe ser considerado en todo proceso de planeación territorial en la región.

A pesar de esta condición climática, la CRT puede hacer frente de manera más o menos satisfactoria ante la sequía. La vulnerabilidad climática a nivel municipal que se presenta en el MAPA 10 fue calculada en función de la combinación de elementos factores físicos (ubicación del municipio), sociales (población y sus características de marginación), económicos (posible pérdida de utilidades) y ecológicos (degradación de recursos naturales). Otra vertiente en que se puede contemplar la vulnerabilidad global es a través de partes componentes: el grado de exposición (demanda y oferta sustentable), la sensibilidad (población y tamaño de localidad, Producto Interno Bruto, evaluación del impacto económico) y la capacidad de adaptación del municipio.
La vulnerabilidad climática de los municipios de Tijuana y Tecate hacen suponer que se cuentan con los elementos necesarios para poder hacer frente a los cambios del clima, llámense sequías o eventos hidrometeorológicos extremos, toda vez que, a pesar de tener algunos rezagos en materia social, urbana y económica, comparativamente con otros municipios del país, éstos dos municipios presentan condiciones favorables para evitar daños ante las futuras condiciones climáticas.
2.2 LOS RECURSOS HÍDRICOS

Aproximadamente las dos terceras partes de la superficie del planeta están cubiertas por agua. Del total del agua en el mundo, poco más del 97% del volumen es agua salada y está contenida en océanos y mares; mientras que menos del 3% es agua dulce o de baja salinidad. Del volumen total de agua dulce, estimado en unos 38 millones de kilómetros cúbicos, aproximadamente el 75% está concentrado en casquetes polares, nieves eternas y glaciares; el 21% está almacenado en el subsuelo, y el 4% restante corresponde a los cuerpos y cursos de agua superficial (lagos y ríos).

En Baja California se tienen tres tipos de usuarios: urbanos, rurales y de medio ambiente, por ley se les debe dar prioridad en ese orden estrictamente. En este panorama el medio ambiente sería el último en la lista de prioridades y por lo tanto el que podría llegar a sufrir mayores consecuencias por un mal manejo.

Población y vivienda

La vecindad fronteriza de Baja California con Estados Unidos de América, así como su nivel de desarrollo económico, han convertido a esta ruta migratoria en una de las de mayor flujo de migrantes en busca de mejores condiciones de vida. La migración entre los diversos municipios de Baja California es de las más bajas registradas en el país. Ello significa que la presencia de un centro urbano concentrador de población migrante dentro del Estado, atrae de manera dirigida a éstos hacia la ciudad de Tijuana.

La población de Baja California se concentra en los centros urbanos de Tijuana, Playas de Rosarito, Ensenada y Tecate en la zona costa, además de Mexicali, la distribución de la población ha ido variando a través de los años con un crecimiento mayor en la zona costera con respecto al Valle de Mexicali. Mientras que en 1970, Mexicali concentraba al 45.5% de la población del Estado, en 2007 solo concentraba el 29.9% de la población del Estado; Tijuana, que en 1970 concentraba el 31.1% de población, en el año 2007 paso a concentrar el 49.86%; esto indica la tendencia de la población a concentrarse en la zona costera donde se observa una mayor tasa de crecimiento poblacional comparada con la región del Valle de Mexicali.

El ritmo de crecimiento de la vivienda en la entidad, que hasta el decenio 1980-1990 fue de 4.4%, se incrementó a 7.8% en la década de 1990 al 2000, colocando al Estado en la segunda posición a nivel nacional. Sin embargo, los
efectos en términos de la demanda de agua para consumo humano son también crecientes, lo que representa un esfuerzo para asegurar las fuentes, contar con la infraestructura requerida para la conducción y distribución a los usuarios y garantizar el abastado de agua en cantidades suficientes a las necesidades del Estado (ver CUADRO 26).

CUADRO 26 Tasa de crecimiento poblacional por municipio

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensenada</td>
<td>13.26</td>
<td>14.89</td>
<td>15.65</td>
<td>14.90</td>
<td>14.43</td>
</tr>
<tr>
<td>Mexicali</td>
<td>45.50</td>
<td>43.36</td>
<td>36.20</td>
<td>30.70</td>
<td>29.90</td>
</tr>
<tr>
<td>Tecate</td>
<td>2.14</td>
<td>2.59</td>
<td>3.15</td>
<td>3.13</td>
<td>3.22</td>
</tr>
<tr>
<td>Tijuana</td>
<td>39.10</td>
<td>39.16</td>
<td>45.00</td>
<td>48.70</td>
<td>49.86</td>
</tr>
<tr>
<td>Playas de Rosarito</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>2.57</td>
<td>2.59</td>
</tr>
<tr>
<td>Tijuana</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Baja California siempre se caracterizó por una tasa de crecimiento poblacional muy alta, frecuentemente por encima de la media nacional. Si bien la velocidad de crecimiento ha disminuido con respecto a los valores registrados en las décadas de los 1950’as y 1960’as, cuando se registraron valores de 11.14 y 8.64 respectivamente, la tasa actual es de 2.71% (ver CUADRO 27).

CUADRO 27 Población y tasa de crecimiento en Baja California

<table>
<thead>
<tr>
<th>Año</th>
<th>No. de habitantes</th>
<th>Tasa de crecimiento (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1940</td>
<td>78,907</td>
<td>----</td>
</tr>
<tr>
<td>1950</td>
<td>226,965</td>
<td>11.14</td>
</tr>
<tr>
<td>1960</td>
<td>520,165</td>
<td>8.64</td>
</tr>
<tr>
<td>1970</td>
<td>870,421</td>
<td>5.28</td>
</tr>
<tr>
<td>1975</td>
<td>1,012,490</td>
<td>3.07</td>
</tr>
<tr>
<td>1980</td>
<td>1,177,886</td>
<td>3.07</td>
</tr>
<tr>
<td>1985</td>
<td>1,398,283</td>
<td>3.49</td>
</tr>
<tr>
<td>1990</td>
<td>1,660,885</td>
<td>3.5</td>
</tr>
<tr>
<td>2000</td>
<td>2,487,367</td>
<td>4.15</td>
</tr>
<tr>
<td>2005</td>
<td>2,844,469</td>
<td>2.71</td>
</tr>
</tbody>
</table>

De acuerdo al Conteo de INEGI 2005, la población del estado se acerca a los 3 millones de habitantes, concentrada principalmente en la zona costera. De mantenerse las tasas actuales de crecimiento, se estima que para el año 2030, la población del estado rondaría los 5 millones y medio de habitantes y seguiría la concentración de la población en la zona costera (ver CUADRO 28).
CUADRO 28 Pronóstico de población al año 2030

<table>
<thead>
<tr>
<th>Municipio</th>
<th>Población rural</th>
<th>Población urbana</th>
<th>Población municipal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensenada</td>
<td>267,604</td>
<td>497,070</td>
<td>764,674</td>
</tr>
<tr>
<td>Mexicali</td>
<td>339,611</td>
<td>1,069,516</td>
<td>1,409,127</td>
</tr>
<tr>
<td>Playas de Rosarito</td>
<td>49,263</td>
<td>166,276</td>
<td>215,539</td>
</tr>
<tr>
<td>Tecate</td>
<td>82,930</td>
<td>151,817</td>
<td>234,747</td>
</tr>
<tr>
<td>Tijuana</td>
<td>267,728</td>
<td>2,663,430</td>
<td>2,931,158</td>
</tr>
<tr>
<td>Total</td>
<td>1,007,136</td>
<td>4,548,109</td>
<td>5,555,245</td>
</tr>
</tbody>
</table>

De mantenerse las tasas de crecimiento en el futuro, existirá una mayor presión de la población sobre los recursos hídricos del Estado.

Fuentes de abastecimiento

Aguas superciliares

La precipitación registrada por la Subdirección Técnica de CONAGUA para el Estado, ha sido del orden de 203.7 mm por año, en el período comprendido entre los años 1941–2005, el segundo más bajo del país después de Baja California Sur con 176.2 mm. Situación que contrasta radicalmente con estados como Tabasco, el más alto del país, con 2,405.8 mm, Chiapas con 1,968.9 y Oaxaca con 1,518.8. En resumen, la precipitación pluvial de Baja California es 3.8 veces menor que la media nacional (773.5 mm) y 11.8 veces menor que Tabasco, Estado que registra la mayor precipitación en el país, en el mismo período.

No es por lo tanto extraño que el estado no cuente con ríos, más allá del Río Colorado, cuyo origen se ubica a más de 2,000 km al norte, en territorio de Estados Unidos, su caudal no recibe contribución significativa dentro del territorio del Estado. Los bajos niveles de precipitación pluvial del Estado son especialmente graves a la luz de la recarga de los acuíferos, cuyo caudal depende de las filtraciones de las lluvias, como se apreciará más adelante en este análisis.

A nivel Península de Baja California (Región Hidrológico-Administrativa I), la presión sobre el recurso hídrico es del 86%, donde, de acuerdo a los estándares internacionales más del 40% se considera fuerte. Este indicador se calcula dividiendo el “Volumen total de agua concesionada” entre la “Disponibilidad natural media de agua”. En hectómetros cúbicos (hms³) por año (1 hms³ = 1,000,000 de m³), la disponibilidad media total de agua para la Península en su conjunto fue de 4,423 hms³ en el año 2005, integrado por un escurrimiento natural superficial medio de 3,012 hms³ y una recarga de acuíferos del orden de 1,411 hms³. Con una población de más de 3.3 millones de habitantes, la disponibilidad natural media total de agua por habitante, en ese mismo año, fue de 1,318 m³/hab., nivel muy cercano al considerado en la clasificación de las Naciones Unidas como extremadamente bajo.

La gravedad de estos bajos niveles de disponibilidad se hace más apremiante si consideramos que la población crece día a día y la disponibilidad de agua, en el mejor de los casos, permanece invariable. La capacidad de
almacenamiento de la región es de 220 hm³, distribuida en siete presas principales: tres de almacenamiento en el estado de Baja California y cuatro para el control de avenidas y recarga de acuíferos en el estado de Baja California Sur. La presa Abelardo L. Rodríguez sobre el Río Tijuana, con una capacidad de 138 hm³, solo se llena en promedio una vez cada diez años (ver CUADRO 29).

CUADRO 29 Presas en territorio mexicano de la Cuenca del Río Tijuana

<table>
<thead>
<tr>
<th>Municipio</th>
<th>Presa</th>
<th>Área de captación (ha)</th>
<th>Altura (m)</th>
<th>Capacidad (Mm³)</th>
<th>Capacidad del vertedor (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nivel de aguas máximas extraordinarias</td>
<td>Nivel de aguas máximas ordinarias</td>
</tr>
<tr>
<td>Tijuana</td>
<td>Abelardo L. Rodríguez</td>
<td>550</td>
<td>77</td>
<td>138</td>
<td>92.4</td>
</tr>
<tr>
<td>Tecate</td>
<td>El Carrizo</td>
<td>238</td>
<td>55.8</td>
<td>43.6</td>
<td>40</td>
</tr>
</tbody>
</table>

Aguas subterráneas

El Programa Nacional Hidráulico 2001-2006 dice textualmente; “La región, (se refiere a la península de Baja California en su conjunto) depende en gran medida de sus recursos de aguas subterráneas. La recarga de los acuíferos es de unos 1,400 hm³ por año, cuando las extracciones ya superan esa cantidad. De los 84 acuíferos de la región, los del Valle de Mexicali, Mesa Arenosa, Santo Domingo y Vizcaíno aportan 63% del volumen total de agua de la región, el volumen restante se distribuye en 84 acuíferos pequeños dispersos en toda la península”. La segunda fuente más importante de agua en Baja California, después del Río Colorado, son los acuíferos locales de los cuales depende principalmente la ciudad de Ensenada en la costa. Estos acuíferos representan, a nivel estatal, el 35% aproximadamente del total del agua, sin embargo hay que notar que uno de los acuíferos más importantes es el de la Mesa Arenosa de San Luis Río Colorado, Sonora, el cual depende de los caudales del Río Colorado. Las cifras por acuífero, especialmente aquellos que juegan un papel determinante en el abasto de agua de las ciudades costeras, presentan un panorama aún más serio, dado que la mayor concentración de acuíferos sobreexplotados se da precisamente en aquellos de los cuales depende parcialmente el suministro de agua de las ciudades frontrizas del estado, Ensenada, Rosarito y otras poblados pequeños como La Rumorosa, El Hongo, etc.

Para el caso de la CRT, el acuífero Tijuana, el de mayor capacidad de toda la cuenca, mantiene valores estables debido al suministro de agua a partir del Acueducto Río Colorado Tijuana, ya que los volúmenes que puede aportar el acuífero local, sería insuficiente para abastecer a la población. Los valores de recarga y disponibilidad se presentan en el CUADRO 30.
CUADRO 30 Disponibilidad media anual de agua subterránea en el acuífero del Río Tijuana (2014)

<table>
<thead>
<tr>
<th>Recarga media anual</th>
<th>Descarga media comprometida</th>
<th>Volumen concesionado de agua subterránea</th>
<th>Volumen de extracción de agua subterránea consignada en estudios técnicos</th>
<th>Disponibilidad media anual de agua subterránea</th>
<th>Déficit</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.6</td>
<td>0.0</td>
<td>14.461559</td>
<td>6.0</td>
<td>12.138441</td>
<td>0.0</td>
</tr>
</tbody>
</table>

El volumen de extracción conjunto asciende a 6.0 hm3 anuales, de los cuales 2.7 hm3 (45%) se utilizan para satisfacer las necesidades del uso público-urbano; 0.4 hm3 (6.7%) para uso agrícola; 0.9 hm3 (15%) al uso pecuario-doméstico; 1.2 hm3 (20%) para uso industrial y 0.8 hm3 (13.3%) para servicios (CONAGUA, 2015).

Con base en datos de la CONAGUA, el territorio del acuífero Tijuana se encuentra completamente vedado (DOF, 15 de mayo de 1965), esta veda se clasifica como tipo III, lo que indica que la capacidad de los mantos acuíferos permite extracciones limitadas para usos domésticos, industriales, de riego y otros. Sin embargo, de acuerdo con la Ley Federal de Derechos en Materia de Agua 2013, el municipio de Tijuana se clasifica como zona de disponibilidad 2, y el acuífero pertenece al Consejo de Cuenca 2 “Baja California”, instalado el 7 de diciembre de 1999. El uso principal del agua subterránea es el público-urbano, donde no se localiza distrito o unidad de riego alguno.

En estudios previos sobre el acuífero Tijuana, durante el periodo de 1979-1999 se habían registrado abatimientos de 0.25 m, lo que indicaba la presión sobre el agua subterránea para uso urbano principalmente. Para el año de 2010, “la configuración del nivel estático mostró que los valores se incrementaban por efecto de la topografía, de 2 a 22 m, a lo largo del cauce de los Ríos Tijuana y Alamar y hacia los piedemontes. Los valores que se registran en las inmediaciones de la ciudad de Tijuana son del orden de los 18 m, en tanto que para los cauces de los Ríos Tijuana y Alamar se encuentran a profundidades cercanas a los 17 y 11 m respectivamente” (CONAGUA, 2015).

Con respecto a la evolución del nivel estático del acuífero para el periodo 2009-2010, la mayor parte del acuífero presenta recuperación en el nivel del agua subterránea, con valores de hasta 1.5 m en la porción central ocasionados por lluvias por arriba de la media anual que se registraron en los últimos años. En contraste, hacia la región noreste del acuífero, se registraron abatimientos de hasta 0.3 m (CONAGUA, 2015).

Por lo que respecta al acuífero Tecate, el CUADRO 31 muestra los principales valores de recarga y extracción de aguas subterráneas, resaltando el valor de déficit entre la recarga y la extracción de agua subterránea.

CUADRO 31 Disponibilidad media anual de agua subterránea en el acuífero del Río Tecate (2014)

<table>
<thead>
<tr>
<th>Recarga media anual</th>
<th>Descarga media comprometida</th>
<th>Volumen concesionado de agua subterránea</th>
<th>Volumen de extracción de agua subterránea consignada en estudios técnicos</th>
<th>Disponibilidad media anual de agua subterránea</th>
<th>Déficit</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>0.0</td>
<td>12.038022</td>
<td>11.0</td>
<td>0.0</td>
<td>-1.9380</td>
</tr>
</tbody>
</table>

Por lo que respecta a la administración del acuífero Tecate, se mantienen las mismas condiciones de veda que el acuífero Tijuana. Los aprovechamientos (pozos) que se contabilizaron en 1975, indicaron que existían en la zona 23 pozos activos, de los cuales 13 eran de la Cervecería Cuauhtémoc y 10 para el abastecimiento de agua potable para la ciudad de Tecate. En un estudio más profundo en 1979, se contabilizaron 22 pozos de agua potable, 19 para el riego, 12 para uso doméstico, 16 para uso industrial y 6 abrevaderos, sumando en total 75 aprovechamientos. En este mismo estudio se concluyó que el agua del acuífero era de buena calidad y determinó un potencial del acuífero de 9.6 hm3/año.

De acuerdo con la piezometría realizada en el año de 1999, “se observó que la profundidad al nivel estático oscilaba entre aproximadamente 2 a 12 m; la profundidad al nivel estático era de 2 a 6 m en los alrededores de los poblados de San Valentín y El Encinal, de 6 a 10 m tanto en el área de Tecate como al oeste de la población El Encinal; las mayores profundidades del orden de 12 m, se localizaban en los alrededores de San José, así como del poblado Sandoval” (CONAGUA, 2015).

Por lo que respecta a la evolución del nivel estático entre 1979 y 1999, es decir, durante 20 años, “en la zona oeste se registraron abatimientos piezométricos generalizados, que variaban entre 5 y 15 m, exceptuando unas recuperaciones en la cabecera del valle que variaban entre 5 y 10 m, y que cubren una extensión muy reducida en los alrededores de San José y San Pablo (La Norteña). Tomando en cuenta lo anterior, se puede considerar un abatimiento medio anual de 0.20 m anuales, aunque no se tienen observaciones en toda la extensión del acuífero” (CONAGUA, 2015).

La zona donde se desarrolla de manera más amplia la agricultura de riego dentro de la CRT se ubica al sur de la ciudad de Tecate, Valle de las Palmas. Esta localidad, de poco más de 3,000 habitantes, se encuentra sobre un acuífero que se encuentra en equilibrio al estar en veda, al igual de los de Tijuana y Tecate, al contar con una recarga de 10.5 Mm3 y una extracción de 7.9 Mm3 a inicios de la década de 2000 (Programa Estatal Hídrico de Baja California, 2003-2007). Esta condición del acuífero cambio significativamente, al tener una sobreexplotación de 3.37 Mm3 para el año 2014 (CEABC, 2014). Los niveles estáticos variaban a lo largo del acuífero en 1983, de 1 m en las partes sureste y noroeste, hasta de 5 m en las zonas limitrofes del suroeste y noreste (INEGI, 1995). El CUADRO 32 muestra algunas características físicas de los tres principales acuíferos de la CRT.

<table>
<thead>
<tr>
<th>Acuífero</th>
<th>Litografía</th>
<th>Tipo</th>
<th>Composición de sólidos totales (ppm)</th>
<th>Pozos</th>
<th>Norias</th>
<th>Manantiales</th>
<th>Uso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tijuana</td>
<td>Grava, arena, limo y arcilla</td>
<td>Libre</td>
<td>500 – 3,000</td>
<td>100</td>
<td>310</td>
<td>--</td>
<td>Doméstico - urbano</td>
</tr>
<tr>
<td></td>
<td>(relleno intermontano)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tecate</td>
<td>Grava, arena, limo y arcilla</td>
<td>Libre</td>
<td>200 - 2,500</td>
<td>58</td>
<td>12</td>
<td>--</td>
<td>Doméstico e industrial</td>
</tr>
<tr>
<td></td>
<td>(relleno intermontano)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valle de las</td>
<td>Grava y arena</td>
<td>Libre</td>
<td>1,000 - 4,000</td>
<td>48</td>
<td>47</td>
<td>4</td>
<td>Agrícola</td>
</tr>
<tr>
<td>Palmas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calidad de agua

La calidad del agua, especialmente la que está relacionado al consumo humano, es una preocupación de los gobiernos nacionales y locales y que requiere de fuertes inversiones para su tratamiento o potabilización. Esta preocupación se refiere al posible impacto que podría tener en la salud de las personas que las consumen, además de los posibles impactos ambientales de un agua de mala calidad en los ecosistemas. Los agentes infecciosos, los productos químicos tóxicos y la contaminación radiológica son factores de riesgo. La salubridad y la calidad del agua son fundamentales para el desarrollo y el bienestar humanos. Proporcionar acceso a agua salubre es uno de los instrumentos más eficaces para promover la salud y reducir la pobreza (OMS, 2017).

Para entregar a los habitantes de la CRT agua potable, la ciudad de Tijuana cuenta con cuatro plantas potabilizadoras de agua para el servicio de la ciudad, es de mayor capacidad son la Planta Potabilizadora Presa Abelardo L. Rodríguez y la Planta Potabilizadora de El Florido, mientras que el municipio de Tecate cuenta con tres plantas, sobresaliendo la Planta Potabilizadora Las Auras-Nopalera y la Planta Potabilizadora Cuchumá (ver CUADRO 33).

CUADRO 33 Plantas potabilizadoras en los municipios de Tecate y Tijuana

<table>
<thead>
<tr>
<th>Municipio</th>
<th>Localidad</th>
<th>Planta</th>
<th>Proceso</th>
<th>Capacidad instalada (l/s)</th>
<th>Caudal potabilizado (l/s)</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tecate</td>
<td>CERESO El Hongo</td>
<td>El Hongo</td>
<td>Filtración directa</td>
<td>40.0</td>
<td>8.3</td>
<td></td>
</tr>
<tr>
<td>Tecate</td>
<td>Tecate</td>
<td>Cuchumá</td>
<td>Filtración directa</td>
<td>125.0</td>
<td>33.7</td>
<td></td>
</tr>
<tr>
<td>Tecate</td>
<td>Tecate</td>
<td>Las Auras o Nopalera</td>
<td>Filtración directa</td>
<td>175.0</td>
<td>157.0</td>
<td></td>
</tr>
<tr>
<td>Tijuana</td>
<td>Tijuana</td>
<td>El Florido</td>
<td>Filtración directa</td>
<td>5,300.0</td>
<td>3,612.1</td>
<td></td>
</tr>
<tr>
<td>Tijuana</td>
<td>Tijuana</td>
<td>Monte de los Olivos</td>
<td>Remoción de fierro-manganeso</td>
<td>130.0</td>
<td>28.2</td>
<td></td>
</tr>
<tr>
<td>Tijuana</td>
<td>Tijuana</td>
<td>Presa Rodríguez</td>
<td>Clarificación convencional</td>
<td>600.0</td>
<td>128.0</td>
<td></td>
</tr>
<tr>
<td>Tijuana</td>
<td>Tijuana</td>
<td>Valle de las Palmas</td>
<td>Filtración directa</td>
<td>125.0</td>
<td>4.2</td>
<td>Opera con bajo gasto y el crecimiento habitacional no ha alcanzado la densidad establecida en su Plan Maestro, podrá ampliarse hasta una capacidad de 500 l/s.</td>
</tr>
</tbody>
</table>

Fuente: Conagua, 2014.

La capacidad instalada en materia de potabilización de agua, garantiza que el agua que llega a los habitantes de las zonas atendidas, reúna los requerimientos de calidad de agua que garantice la salud por el uso agua potable, esto en palabras de los titulares de las dependencias que operan esta infraestructura, al cumplir, para el caso de Tijuana, con la NOM-127, que esta referida a la calidad de agua para consumo humano (Diario Frontera, Tijuana, Baja California, consultado en: http://www.uniradiionoticias.com/noticias/tijuana/283365/garantiza-cespt-potabilidad-del-agua-en-la-ciudad.html, 29 de diciembre de 2017).
Con base en los datos proporcionado por la Comisión Estatal de Servicios Públicos de Tijuana (CESPT), “el canal del Río Tijuana conduce las aguas tratadas de las plantas de tratamiento Arturo Herrera, La Morita. El Refugio y Vista del Valle, además de los escurrimientos provenientes de la Ciudad de Tecate y en ocasiones hasta excedentes de la Presa Barret, en Estados Unidos. Dentro de los compromisos de la CESPT, es el bombear esta agua antes de su cruce a Estados Unidos por la línea internacional en tiempos de estiag, el CUADRO 34 muestra el comportamiento de la cantidad bombeada diariamente evitando de esta manera el cruce del agua en cuestión hacia el vecino país, con la condicionante que cuando el gasto por lluvias es mayor al acordado se suspende el bombeo”.

CUADRO 34 Volumen diario del caudal que se bombea del Río Tijuana hacia el Océano Pacífico (diciembre de 2013)

<table>
<thead>
<tr>
<th>Diciembre</th>
<th>Volumen m³</th>
<th>Volumen instantáneo l/s</th>
<th>Condiciones de operación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0.00</td>
<td>Fuera de operación</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0.00</td>
<td>Fuera de operación</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0.00</td>
<td>Fuera de operación</td>
</tr>
<tr>
<td>4</td>
<td>42,282</td>
<td>489.38</td>
<td>Operando</td>
</tr>
<tr>
<td>5</td>
<td>69,678</td>
<td>806.46</td>
<td>Operando</td>
</tr>
<tr>
<td>6</td>
<td>58,088</td>
<td>672.08</td>
<td>Operando</td>
</tr>
<tr>
<td>7</td>
<td>33,372</td>
<td>386.25</td>
<td>Operando</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0.00</td>
<td>Fuera de operación</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0.00</td>
<td>Fuera de operación</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0.00</td>
<td>Fuera de operación</td>
</tr>
<tr>
<td>11</td>
<td>52,272</td>
<td>65.00</td>
<td>Operando</td>
</tr>
<tr>
<td>12</td>
<td>68,022</td>
<td>787.29</td>
<td>Operando</td>
</tr>
<tr>
<td>13</td>
<td>64,350</td>
<td>744.79</td>
<td>Operando</td>
</tr>
<tr>
<td>14</td>
<td>74,070</td>
<td>857.29</td>
<td>Operando</td>
</tr>
<tr>
<td>15</td>
<td>61,812</td>
<td>715.42</td>
<td>Operando</td>
</tr>
<tr>
<td>16</td>
<td>63,378</td>
<td>733.54</td>
<td>Operando</td>
</tr>
<tr>
<td>17</td>
<td>59,796</td>
<td>692.08</td>
<td>Operando</td>
</tr>
<tr>
<td>18</td>
<td>61,236</td>
<td>708.75</td>
<td>Operando</td>
</tr>
<tr>
<td>19</td>
<td>33,264</td>
<td>385.00</td>
<td>Operando</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>0.00</td>
<td>Fuera de operación</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>0.00</td>
<td>Fuera de operación</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
<td>0.00</td>
<td>Fuera de operación</td>
</tr>
<tr>
<td>23</td>
<td>0</td>
<td>0.00</td>
<td>Fuera de operación</td>
</tr>
<tr>
<td>24</td>
<td>40,482</td>
<td>468.54</td>
<td>Operando</td>
</tr>
<tr>
<td>25</td>
<td>62,964</td>
<td>728.75</td>
<td>Operando</td>
</tr>
<tr>
<td>26</td>
<td>61,848</td>
<td>715.83</td>
<td>Operando</td>
</tr>
<tr>
<td>27</td>
<td>64,890</td>
<td>751.04</td>
<td>Operando</td>
</tr>
<tr>
<td>28</td>
<td>57,726</td>
<td>668.13</td>
<td>Operando</td>
</tr>
<tr>
<td>29</td>
<td>64,206</td>
<td>743.13</td>
<td>Operando</td>
</tr>
<tr>
<td>30</td>
<td>60,912</td>
<td>705.00</td>
<td>Operando</td>
</tr>
<tr>
<td>31</td>
<td>62,154</td>
<td>719.38</td>
<td>Operando</td>
</tr>
<tr>
<td>Total m³</td>
<td>1,216,802</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Promedio LPS</td>
<td></td>
<td>644.91</td>
<td></td>
</tr>
</tbody>
</table>

Un elemento central en el manejo de las aguas residuales de la ciudad de Tijuana, la zona urbana que más demanda de agua potable requiere y, por lo tanto, la que aporta un mayor volumen de aguas residuales, es la infraestructura
que utiliza para desalojar las aguas urbanas hacia el Océano Pacífico. El **CUADRO 35** presenta la información sobre la infraestructura con la que cuenta los municipios de Tecate y Tijuana para el tratamiento de sus aguas residuales.

CUADRO 35 Plantas de tratamiento de aguas residuales en la Cuenca del Río Tijuana

<table>
<thead>
<tr>
<th>Municipio</th>
<th>Localidad</th>
<th>Planta</th>
<th>Proceso</th>
<th>Capacidad instalada (l/s)</th>
<th>Caudal tratado (l/s)</th>
<th>Cuerpo receptor o reúso</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tecate</td>
<td>CERESO El Hongo</td>
<td>CERESO El Hongo</td>
<td>Lodos activados</td>
<td>27.5</td>
<td>10.9</td>
<td>Arroyo Las Calabazas</td>
<td></td>
</tr>
<tr>
<td>Tecate</td>
<td>Tecate</td>
<td>Tecate</td>
<td>Filtros biológicos o rociadores o percoladores</td>
<td>200.0</td>
<td>143.3</td>
<td>Arroyo Tecate (una parte se vierte a un humedal artificial paralelo al arroyo)</td>
<td></td>
</tr>
<tr>
<td>Tijuana</td>
<td>Tijuana</td>
<td>Arturo Herrera</td>
<td>Lodos activados</td>
<td>460.0</td>
<td>227.0</td>
<td>Río Tijuana-Océano Pacífico</td>
<td>Anteriormente denominada Monte de los Olivos</td>
</tr>
<tr>
<td>Tijuana</td>
<td>Tijuana</td>
<td>Binacional o PITAR</td>
<td>Lodos activados</td>
<td>1,100.0</td>
<td>1,075.7</td>
<td>Océano Pacífico</td>
<td>Opera la CILA-EUA (Acta 283)</td>
</tr>
<tr>
<td>Tijuana</td>
<td>Tijuana</td>
<td>CAR-UABC</td>
<td>Lodos activados</td>
<td>5.0</td>
<td>6.0</td>
<td>Reúso en riego en campos deportivos y áreas verdes</td>
<td>CAR- Centro de Alto Rendimiento</td>
</tr>
<tr>
<td>Tijuana</td>
<td>Tijuana</td>
<td>Club Campestre</td>
<td>Lodos activados</td>
<td>20.0</td>
<td>20.0</td>
<td>Reúso riego en campo de golf</td>
<td>Planta particular, riego de campo de golf Club Campestre</td>
</tr>
<tr>
<td>Tijuana</td>
<td>Tijuana</td>
<td>Ecoparque</td>
<td>Filtros biológicos o rociadores o percoladores</td>
<td>5.0</td>
<td>3.0</td>
<td>Reúso</td>
<td>Operada por el Colegio de la Frontera Norte (El Colef)</td>
</tr>
<tr>
<td>Tijuana</td>
<td>Tijuana</td>
<td>El Prado</td>
<td>Lodos activados</td>
<td>56.0</td>
<td>12.1</td>
<td>Arroyo Huaguatay, un pequeño volumen se aprovecha en el riego de áreas verdes de un parque adyacente</td>
<td>Construida por el desarrollo de vivienda y transferida a la CTIP para su operación y mantenimiento</td>
</tr>
<tr>
<td>Tijuana</td>
<td>Tijuana</td>
<td>Hacienda Las Flores</td>
<td>Lodos activados</td>
<td>2.5</td>
<td>2.0</td>
<td>Tributario sin nombre del arroyo San Antonio de los Buenos para su descarga final en el océano</td>
<td>Planta provisional lodos activados, aireación extendida, opera en tanto quede la planta Tecolote – La Gloria</td>
</tr>
<tr>
<td>Tijuana</td>
<td>Tijuana</td>
<td>La Morita</td>
<td>Zanjas de oxidación</td>
<td>254.0</td>
<td>159.1</td>
<td>Arroyo Matanuco - río Tijuana. Reúso en vivero y riego de áreas verdes. Descarga al río Tijuana, se bombea y descarga al Océano Pacífico</td>
<td>Arroyo Matanuco - río Tijuana. Reúso en vivero y riego de áreas verdes. Descarga al río Tijuana, se bombea y descarga al Océano Pacífico</td>
</tr>
<tr>
<td>Tijuana</td>
<td>Tijuana</td>
<td>Las Delicias</td>
<td>Terciario</td>
<td>30.0</td>
<td>33.7</td>
<td>Arroyo sin nombre tributario de la presa Rodríguez</td>
<td>Opera con proceso de ultrafiltración</td>
</tr>
<tr>
<td>Tijuana</td>
<td>Tijuana</td>
<td>Los Valles</td>
<td>Lodos activados</td>
<td>15.0</td>
<td>10.0</td>
<td>Arroyo sin nombre, tributario del Huaguatay, sin reúso</td>
<td>Planta provisional próximamente se reubicará a 1,200 m abajo y se ampliará hasta 30 l/s, misma que operará hasta contar con el emisor de descarga a la PFA Rosarito I</td>
</tr>
<tr>
<td>Tijuana</td>
<td>Tijuana</td>
<td>Pórticos de San Antonio</td>
<td>Lodos activados</td>
<td>15.0</td>
<td>5.6</td>
<td>Arroyo sin nombre, sin reúso</td>
<td>Planta provisional próximamente se reubicará a 1,200 m abajo y se ampliará hasta 30 l/s, misma que operará hasta contar con el emisor de descarga a la PFA Rosarito I</td>
</tr>
<tr>
<td>Tijuana</td>
<td>Tijuana</td>
<td>San Antonio de los Buenos</td>
<td>Lagunas aireadas</td>
<td>1,100.0</td>
<td>932.9</td>
<td>Océano Pacífico</td>
<td>Operan con deficiencias, requiere readecuarse soportar las aportaciones</td>
</tr>
<tr>
<td>Tijuana</td>
<td>Tijuana</td>
<td>San Antonio del Mar</td>
<td>Lodos activados</td>
<td>2.5</td>
<td>3.0</td>
<td>Descarga al Océano Pacífico. Una parte del volumen se aprovecha en el riego de áreas verdes</td>
<td>Descarga al Océano Pacífico. Una parte del volumen se aprovecha en el riego de áreas verdes</td>
</tr>
<tr>
<td>Tijuana</td>
<td>Tijuana</td>
<td>Santa Fe</td>
<td>Lodos activados</td>
<td>19.0</td>
<td>11.5</td>
<td>Descarga en arroyo sin nombre, un volumen importante de su sfuente se aprovecha en riego de áreas verdes</td>
<td>Se observa un deterioro incipiente en las partes metálicas</td>
</tr>
</tbody>
</table>

Fuente: Conagua, 2014.
Con base en los datos del CUADRO 35, las aguas tratadas de la ciudad de Tijuana, incluyendo los aportes de Tecate, son vertidas en su mayor parte al Océano Pacífico una vez que abandonan la Planta de Tratamiento de Aguas Residuales de San Antonio de los Buenos, localizada en la zona costa en el km. 15 de la carretera escénica Tijuana-Ensenada y de la Planta Internacional de Tratamiento de Aguas Residuales (PITAR). Los valores bacteriológicos en tres puntos de la costa de Tijuana se presentan en el CUADRO 36.

CUADRO 36 Resultados bacteriológicos de monitoreo de la zona costera de Tijuana

Playas de Tijuana, frente a rampa de acceso a la playa (2017)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Coliformes totales</td>
<td>93</td>
<td>>=2,400</td>
<td>240</td>
<td>43</td>
<td>3</td>
<td>3</td>
<td>>=2,400</td>
<td><3</td>
<td>4</td>
<td>4</td>
<td><3</td>
<td><3</td>
</tr>
<tr>
<td>Coliformes fecales</td>
<td>93</td>
<td>>=2,400</td>
<td>93</td>
<td>23</td>
<td>3</td>
<td>3</td>
<td>>=2,400</td>
<td><3</td>
<td>4</td>
<td>4</td>
<td><3</td>
<td><3</td>
</tr>
<tr>
<td>Enterococos</td>
<td>68</td>
<td>1,145*</td>
<td>31</td>
<td><10</td>
<td>10</td>
<td><10</td>
<td>nd</td>
<td>10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
</tbody>
</table>

Playas de Tijuana, El Vigía

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Coliformes totales</td>
<td>4</td>
<td>>=2,400</td>
<td>240</td>
<td>75</td>
<td><3</td>
<td><3</td>
<td>460</td>
<td>7</td>
<td>9</td>
<td>4</td>
<td>3</td>
<td><3</td>
</tr>
<tr>
<td>Coliformes fecales</td>
<td>4</td>
<td>>=2,400</td>
<td>240</td>
<td>75</td>
<td><3</td>
<td><3</td>
<td>93</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td><3</td>
</tr>
<tr>
<td>Enterococos</td>
<td><10</td>
<td>554*</td>
<td>10</td>
<td>41</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
<td><10</td>
</tr>
</tbody>
</table>

Playa Blanca, km. 20 escénica Tijuana-Ensenada

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Coliformes totales</td>
<td>460</td>
<td>>=2,400</td>
<td>>=2,400</td>
<td>63</td>
<td>1,100</td>
<td>240</td>
<td>>=2,400</td>
<td>1,100</td>
<td>330</td>
<td>460</td>
<td>240</td>
<td>9</td>
</tr>
<tr>
<td>Coliformes fecales</td>
<td>460</td>
<td>1,100</td>
<td>>=2,400</td>
<td>31</td>
<td>1,100</td>
<td>240</td>
<td>>=2,400</td>
<td>460</td>
<td>240</td>
<td>460</td>
<td>240</td>
<td>4</td>
</tr>
<tr>
<td>Enterococos</td>
<td>275**</td>
<td>577*</td>
<td>1,190**</td>
<td>46</td>
<td>233**</td>
<td>2,300**</td>
<td>1,529**</td>
<td>160</td>
<td>46</td>
<td>383**</td>
<td>1,918**</td>
<td><10</td>
</tr>
</tbody>
</table>

Notas: nd: no determinado.
* Valores reportados >200 NMP Enterococos, causados por precipitación pluvial en la región.
** Valores reportados >200 NMP Enterococos provocado por descargas de fraccionamientos habitacionales en litoral que cuentan con planta de tratamiento de aguas residuales fuera de operación.

Con base en la información del CUADRO 36, es en Playa Blanca donde se registran los mayores valores de contaminación debido a que en este punto es donde se vierte el mayor volumen de agua proveniente de la Plantas de Tratamiento de Aguas Residuales de San Antonio de los Buenos, que concentra un importante volumen de agua residual de la ciudad de Tijuana.

A pesar de que el organismo operador del agua en Tijuana, mantiene vigilancia permanente sobre el flujo del canal del río Tijuana y el tratamiento de las aguas negras de la ciudad, se han presentado emergencias debido a la ruptura
de colectores de aguas servidas urbanas que llegan a desembocar en Estados Unidos. Ante ello, tanto la CESPT como la CILA, mantienen comunicación constante para evitar la contaminación del Río Tijuana al cruzar la línea fronteriza e impactar ambientalmente los ecosistemas del estuario del Río Tijuana, así como a la población a ambos lados de la frontera. El último derrame de aguas negras sobre el Río Tijuana ocurrió el 1 de febrero de 2017, cuando colapsó el colector de aguas residuales “Insurgentes” de 48 pulgadas de diámetro en la confluencia del Río Tijuana y Río Alamar, en Tijuana, B.C. lo que provocó que una cantidad indeterminada de aguas residuales se vertiera en el Río Tijuana, fluyendo a través de territorio de México y de Estados Unidos (CILA, 2017, en http://www.cila.gob.mx/prensa/prensa114.pdf, consultado el 26 de diciembre de 2017).

La calidad de agua, ya sea la que es tratada por el organismo operador de Tijuana, como aquella que llega a las playas cercanas a la ciudad, es un elemento central en cuanto a la salud de los usuarios del agua como para el equilibrio de los ecosistemas costeros y marinos. La última información sobre el monitoreo de calidad de agua de mar para el municipio de Tijuana como resultado de los muestreos sobre calidad bacteriológica dentro del Programa Nacional de Playas Limpias se presenta en el CUADRO 37.

<table>
<thead>
<tr>
<th>Playas de Tijuana/mes</th>
<th>Ene</th>
<th>Feb</th>
<th>Prev Mar</th>
<th>Mar</th>
<th>Abr</th>
<th>May</th>
<th>Prev Ul</th>
<th>Ago</th>
<th>#M</th>
<th>FN</th>
<th>Rango <</th>
<th>Clas</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecha</td>
<td>12</td>
<td>5</td>
<td>MG</td>
<td>10</td>
<td>4</td>
<td>2</td>
<td>MG</td>
<td>3</td>
<td>8</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Antonio del Mar</td>
<td>20</td>
<td><10</td>
<td>31</td>
<td>52</td>
<td><10</td>
<td>15</td>
<td>20</td>
<td>30</td>
<td>10</td>
<td>24</td>
<td>0</td>
<td><10-86</td>
<td>Apta</td>
</tr>
<tr>
<td>Parque México</td>
<td>166</td>
<td>20</td>
<td>10</td>
<td>98</td>
<td><10</td>
<td><10</td>
<td>16</td>
<td>31</td>
<td>5</td>
<td>41</td>
<td>22</td>
<td>0</td>
<td><10-166</td>
</tr>
<tr>
<td>La Mojonera</td>
<td>187</td>
<td><10</td>
<td>10</td>
<td>52</td>
<td><10</td>
<td><10</td>
<td>12</td>
<td>52</td>
<td>SD</td>
<td>52</td>
<td>22</td>
<td>0</td>
<td><10-187</td>
</tr>
<tr>
<td>Playa Blanca</td>
<td>172</td>
<td>10</td>
<td>71</td>
<td>20</td>
<td><10</td>
<td><10</td>
<td>22</td>
<td>10</td>
<td>41</td>
<td>10</td>
<td>24</td>
<td>0</td>
<td><10-172</td>
</tr>
<tr>
<td>Baja Malibú</td>
<td>10</td>
<td>20</td>
<td>37</td>
<td>10</td>
<td>121</td>
<td>10</td>
<td>18</td>
<td>41</td>
<td>20</td>
<td><10</td>
<td>24</td>
<td>0</td>
<td><10-96</td>
</tr>
<tr>
<td>Total</td>
<td>5</td>
<td>5</td>
<td>30</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>30</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>116</td>
<td>0</td>
<td>10-172</td>
</tr>
</tbody>
</table>

Los monitoreos de la calidad de agua en las playas de Tijuana, son un indicador que se publica frecuentemente para proteger a los usuarios de las playas sobre el uso recreativo del agua, sin embargo, durante la temporada de lluvias, entre noviembre y marzo, es posible que los datos del CUADRO 37 resulten diferentes, ya que el arrastre del agua de lluvia a través de los colectores pluviales de la ciudad, así como los caudales que llegan a las playas desde las calles, resulten con componentes nocivos para la salud humana y para el ecosistema costero (grasas, aceites, residuos sólidos, etc.), por lo que las mismas autoridades estatales, recomiendan a la población de no entrar en contacto con el agua de estas playas.

Como lo muestra el CUADRO 37, los monitoreos de la calidad del agua en las playas ocurre una vez al mes, y en temporada de verano hasta en tres días, por lo que se debe considerar ampliar los monitoreos con más frecuencia,
además de que la información de la calidad de agua sea publicada en tiempo real para que los usuarios puedan tomar la decisión de hacer uso, o no, de este elemento.

En cuanto a los volúmenes de agua residual que se produce en la ciudad de Tecate, la Planta de Tratamiento de Aguas Residuales de Tecate, ubicada paralelamente al cauce del Río Tecate, próximo a la colonia Rincón Tecate, muestra una composición propia de las aguas servidas urbanas (ver CUADRO 38).

CUADRO 38 Valores de los análisis del afluente y efluente de la Planta de Tratamiento de Aguas Residuales de Tecate (2003)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concentración promedio mensual</td>
<td>Concentración promedio diaria</td>
</tr>
<tr>
<td>Temperatura °C</td>
<td>N.A.</td>
<td>N.A</td>
</tr>
<tr>
<td>Grasas y aceites</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>Materia flotante</td>
<td>Ausente</td>
<td>Ausente</td>
</tr>
<tr>
<td>Sólidos sedimentables</td>
<td>1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Sólidos suspendidos totales</td>
<td>75</td>
<td>150</td>
</tr>
<tr>
<td>Demanda bioquímica de oxígeno (DBO5)</td>
<td>75</td>
<td>150</td>
</tr>
<tr>
<td>Nitrógeno total</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>Arsénico total</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>Cadmio total</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>Cianuro total</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Cromo total</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>Mercurio total</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>Níquel total</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Plomo total</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>Zinc total</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>PH (sin unidades)</td>
<td>5-10</td>
<td>5-10</td>
</tr>
<tr>
<td>Demanda química de oxígeno</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

N.A. No es aplicable.

El agua del efluente de la Planta de Tratamiento de Aguas Residuales de Tecate, son vertidas al cauce del Río Tecate, donde una parte del volumen se aprovecha en una zona de humedales artificiales construidos como parte de un proyecto de saneamiento de esta corriente, la cual sigue su recorrido hasta la ciudad de Tijuana, a través del Río Alamar.

Río Colorado

Baja California es particularmente dependiente de lo que ocurre fuera de su frontera, ya que la principal fuente de suministro de agua, por no decir la única confiable, es la cuenca binacional del Río Colorado, que comparte con siete estados de la Unión Americana. Lo que pase en esta cuenca repercutirá inevitablemente en mayor o menor grado en el Estado. No se puede, por lo tanto, hablar del agua en Baja California sin entender por lo menos someramente la Cuenca del Río Colorado desde su origen hasta su descarga en el Golfo de California. El Río Colorado, cuyo origen se encuentra en Estados Unidos, fue motivo de un Tratado Internacional entre los dos países firmado en 1944, en el
cual se garantiza para México un volumen mínimo de 1’850,234 Mm³ anuales que puede llegar hasta 2’096,931 Mm³ en caso de presentarse excedentes en la Cuenca Alta del Río Colorado.

Históricamente, desde 1922, la Cuenca del Colorado se ha dividido en la llamada “Cuenca Alta”, que comprende los estados de Wyoming, Utah, Colorado y Nuevo México, en la Unión Americana, y la “Cuenca Baja” que incluye California, Arizona y Nevada también, en la Unión Americana y Baja California en México. Con base en acuerdos interestatales y el Tratado Internacional de Límites y Aguas celebrado con México en 1944, la Suprema Corte de los Estados Unidos decretó que 16.5 millones de acres-pie anuales (20,361 millones de metros cúbicos), de las aguas presentes y futuras del río se destinarían para su uso en las Cuencas Alta y Baja de ese país y 1.5 millones de acres-pie (1,850 millones de metros cúbicos) corresponderían a México. En este contexto se asignaron al Estado de California (USA), 4.4 millones anuales de acres-pie (5,429.6 millones de metros cúbicos).

En los próximos 50 años, el US Bureau of Reclamation, prevé una disminución del flujo natural del Río Colorado de aproximadamente un 9%, paralelamente con un aumento proyectado en la frecuencia y la duración de las sequías en relación con lo observado en el registro histórico de caudales. Se prevé que en los próximos 50 años se produzcan sequías de cinco o más años de duración el 40% del tiempo. Los cambios previstos en los procesos del clima e hidrología incluyen calentamiento continuo en toda la Cuenca, una tendencia hacia la sequía, aunque los patrones de precipitación continúan siendo espacial y temporalmente complejos; un aumento de evapotranspiración así como la disminución de la capa de nieve en la zona de captura de la Cuenca, ya que la precipitación caería más en forma de lluvia que de nieve.

En cuanto a la oferta y demanda hídrica para el estado de Baja California, incluyendo los volúmenes que aporta el Río Colorado, se presentan en el CUADRO 39.

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Oferta (hm³)</th>
<th>%</th>
<th>Demanda (hm³)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escurrimientos superficiales</td>
<td>672</td>
<td>19</td>
<td>1,869</td>
<td>56</td>
</tr>
<tr>
<td>Río Colorado</td>
<td>1,850</td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subterránea</td>
<td>1,100</td>
<td>30</td>
<td>1,467</td>
<td>44</td>
</tr>
<tr>
<td>Suma</td>
<td>3,622</td>
<td>100</td>
<td>3,336</td>
<td>100</td>
</tr>
<tr>
<td>Disponible</td>
<td>286 hm³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Déficit subterránea</td>
<td>367 hm³</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Gobierno del Estado de Baja California, 2008.

Usuarios por tipo de actividad

Urbano

La infraestructura del sector hidráulico en materia de agua para uso urbano en el Estado, está cubierta la mayor parte en las ciudades de Mexicali y Ensenada y los municipios de Tecate, Tijuana y Playas de Rosarito. Existen aún
comunidades rurales en Ensenada y Mexicali que no son operados por los Organismos encargados del servicio. Y además pequeñas comunidades aisladas que no tienen ni siquiera el servicio de agua entubado.

La ciudad de Tijuana es el principal consumidor de agua en el estado, utiliza el 87.3% de agua que proviene del Río Colorado, y en general la zona costera depende en un 54.4% del Río Colorado, y el 45.6% depende de los acuíferos regionales de los cuales el 82.6% están calificados como sobreexplotados o en equilibrio.

Se espera que la demanda para uso doméstico en el sector urbano se incrementara de 7,313 litros por segundo del año 2007 a 13,357 litros por segundo en el año 2030. La oferta y/o asignaciones de agua, en las cabeceras municipales de Playas de Rosarito, Tijuana y Ensenada son insuficientes.

Industrial

La industria en Baja California tiene un consumo relativamente bajo de agua, siendo aproximadamente el 8% del total. Utilizando agua reciclada es posible reducir al menos en parte el consumo de agua de este sector, aunque se debe recordar que en esta categoría de consumo industrial se incluye toda la industria hotelera la cual por cuestiones de mercado y de percepción de sus clientes tienen muy limitado el uso de aguas recicladas para sus operaciones. Los usos del agua en el estado de Baja California se presentan en el **CUADRO 40**.

<table>
<thead>
<tr>
<th>Uso</th>
<th>Volumen (hm³)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrícola</td>
<td>2,796</td>
<td>83.81</td>
</tr>
<tr>
<td>Público-Urbano</td>
<td>273</td>
<td>8.18</td>
</tr>
<tr>
<td>Industria</td>
<td>267</td>
<td>8.00</td>
</tr>
<tr>
<td>Total</td>
<td>3,336</td>
<td>100</td>
</tr>
</tbody>
</table>

Fuente: Gobierno del Estado de Baja California, 2008.

Infraestructura

En Baja California existen dos tipos de infraestructura, la urbana y la agrícola. Las obras de infraestructura urbana se construyeron para dar servicio de abastecimiento, captación, conducción, potabilización, distribución, recolección y tratamiento de aguas residuales, aguas para rehúso y disposición final de aguas negras. Las obras de captación son presas de las cuales: la presa Abelardo Rodríguez en Tijuana, con una capacidad útil de 90 millones de m³; la presa El Carrizo en Tecate con 40 millones de m³ de capacidad, la presa Ing. Emilio López Zamora en Ensenada con 3 millones de m³, y la presa Morelos en Mexicali con una capacidad 9,900 m³ por segundo en el vertedero (SEMARNAT, 2012).

Existen 12 acueductos en el estado entre los cuales se destaca el acueducto Río Colorado-Tijuana con 126 km de longitud y 5,333 litros por segundo de capacidad. Como parte de este sistema existen plantas potabilizadoras en las zonas urbanas y rurales del Estado, entre las que destacan, la Ingeniero López Zamora en Ensenada con 150 litros por segundo de capacidad instalada, en Mexicali, las plantas uno, dos y tres para un total de 5,550 litros por
segundo, en Tecate las plantas del Cuchumá y la Nopalera con 325 litros por segundo y las plantas El Florido, Abelardo L. Rodríguez y Monte de los Olivos para un total 4,730 litros por segundo.

La cobertura en el Estado de agua potable a nivel de cabecera municipal, Mexicali y Tecate tienen cubierto el servicio en la ciudad, mientras que Ensenada, Tijuana, y Playas de Rosarito presentan coberturas del 98, 96 y 94 % respectivamente.

La cobertura del alcantarillado sanitario no es tan completa como la cobertura de agua potable, Rosarito cuenta con el 57 % de su población cubierta por este servicio, Tecate el 77%, Tijuana el 86%, Ensenada 64%, Mexicali el 75%, el promedio del estado es del 78%.

El volumen de aguas residuales tratadas en las distintas plantas de tratamiento de aguas residuales del Estado, las ciudades de Ensenada, Playas de Rosarito y Tecate dan tratamiento al total del volumen generado. Mexicali trata el 87 % y Tijuana el 82%, el promedio estatal de las cabeceras municipales es el 86%.

Cambio climático en los recursos hídricos

El cambio climático ha provocado un considerable aumento al nivel del mar y esto ha comenzado a afectar a los ecosistemas y comunidades de las zonas costeras. El mayor impacto se va a presentar en la región de Mexicali, principalmente en el delta del Río Colorado y la Laguna Salada. Los modelos advierten un incremento de temperatura en todo el estado al igual que una mayor variación en los patrones de precipitación. Estos cambios van a afectar tanto la agricultura como a los patrones de uso de suelo y principalmente al crecimiento de las ciudades.

El principal impacto potencial en la administración de los recursos hídricos del estado va a provenir de una posible disminución en la cantidad de agua del Río Colorado, como se ha dicho anteriormente, el desarrollo de Baja California depende en gran medida de los caudales de ese río.

Por lo tanto lo que ocurre en ese río va a determinar los patrones de crecimiento del Estado, las variaciones en los patrones de lluvia van a afectar primordialmente a los sistemas naturales y en menor medida a la provisión de agua a las ciudades. Ahora bien, si hay una variación en los patrones de lluvia esto va a significar de igual forma, variaciones en la recarga de los acuíferos; aunque estos sólo aportan aproximadamente el 35% del total del agua consumida en el estado y la mayoría de este porcentaje pertenece a dos acuíferos alimentados por el Río Colorado, por otra parte hay que destacar que la mayoría de los acuíferos se encuentran actualmente sobreexplotados.

El incremento desmedido en las temperaturas va a significar mayor evaporación de las plantas, tanto cultivadas como las silvestres. Por lo que va a ser necesario variar la selección de cosechas y mejorar los sistemas de irrigación para reducir las pérdidas y de esta manera favorecer a las especies con baja evapotranspiración. Lamentablemente
muchas especies de la vegetación natural no van a poder adaptarse y van a correr el riesgo de desaparecer de los sistemas naturales.

La infraestructura hídrica de Baja California en este momento se encuentra al límite de su capacidad, y de continuar las tendencias grupales de crecimiento poblacional en las zonas costeras, va a ser necesario construir nuevas obras de infraestructura que permitan abastecer la demanda de agua de los asentamientos humanos.

Los estudios que se han realizado sobre el incremento poblacional en el estado, infieren que la población se va a duplicar para el año 2030, por lo tanto se duplicará el consumo de agua en las ciudades. Si a esto se le agrega que los modelos del cambio climático global pronostican una disminución en los caudales del Río Colorado, se van a generar importantes impactos en la distribución actual del agua, lo que provocará una redistribución de los recursos debido a que se tendrá que reducir el uso de agua a la agricultura para poder abastecer las necesidades de la población.

Abastecimiento de agua potable y drenaje sanitario

La Cuenca Río Tijuana (CRT) cuenta con diversos sistemas de abastecimiento de agua potable, sin embargo, debido a la aridez de la región, la disponibilidad del agua no es suficiente para satisfacer la demanda de las ciudades, principalmente en Tijuana, por lo que se recurre al Acueducto Río Colorado-Tijuana (ARCT). Este acueducto cuenta con una capacidad máxima de diseño de 5,333 l/s equivalente a 168,181,488 m³.anuales para los diversos abastecimientos; el cual recorre más de 100 kilómetros y a desniveles de más de 1,000 metros (Sierra La Rumorosa, en Tecate).

Las condiciones geográficas del estado de Baja California limitan el manejo del recurso hídrico, la asignación total de la CRT es de 183,741,235 m³; esto representa poco más de la mitad de las asignaciones del Estado, de las cuales 80,100,000 m³ son de fuente superficial y 103,641,235 m³ de fuentes subterráneas (ver CUADRO 41).

CUADRO 41. Volumenes (m³/anuales) bombeados de agua cruda correspondiente al Acueducto del Río Colorado-Tijuana (ARCT)

<table>
<thead>
<tr>
<th>Año</th>
<th>Volumen total bombeado (m³)</th>
<th>Volumen entregado</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tijuana (m³)</td>
<td>Tecate (m³)</td>
<td></td>
</tr>
<tr>
<td>1982</td>
<td>--</td>
<td>729,250</td>
<td>-</td>
</tr>
<tr>
<td>1983</td>
<td>--</td>
<td>4,767,206</td>
<td>-</td>
</tr>
<tr>
<td>1984</td>
<td>--</td>
<td>7,594,260</td>
<td>-</td>
</tr>
<tr>
<td>1985</td>
<td>2,182,572</td>
<td>10,365,355</td>
<td>-</td>
</tr>
<tr>
<td>1986</td>
<td>8,543,459</td>
<td>18,247,457</td>
<td>-</td>
</tr>
<tr>
<td>1987</td>
<td>28,830,095</td>
<td>21,541,000</td>
<td>-</td>
</tr>
<tr>
<td>1988</td>
<td>34,817,398</td>
<td>34,529,000</td>
<td>-</td>
</tr>
<tr>
<td>1989</td>
<td>68,969,420</td>
<td>54,626,000</td>
<td>-</td>
</tr>
<tr>
<td>1990</td>
<td>62,435,062</td>
<td>59,465,00</td>
<td>-</td>
</tr>
<tr>
<td>1992</td>
<td>41,480,468</td>
<td>44,470,000</td>
<td>1,414,991</td>
</tr>
<tr>
<td>1993</td>
<td>17,244,169</td>
<td>47,761,000</td>
<td>759,875</td>
</tr>
<tr>
<td>1994</td>
<td>15,925,535</td>
<td>48,745,000</td>
<td>176,301</td>
</tr>
<tr>
<td>1995</td>
<td>--</td>
<td>1,201,000</td>
<td>216,187</td>
</tr>
<tr>
<td>1996</td>
<td>24,946,659</td>
<td>85,501,173</td>
<td>122,892</td>
</tr>
<tr>
<td>Año</td>
<td>Volumen total bombeado (m³/ánualas)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>80,655,697</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>91,728,087</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>119,691,977</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>117,085,191</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>130,397,395</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>137,850,798</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>152,839,188.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>164,249,949.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>175,660,710.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: elaboración propia con datos de los volúmenes de bombeo del ARCT.

De acuerdo con el Censo de Población y Vivienda 2015 (INEGI, 2015), en el siguiente cuadro (ver CUADRO 43) se puede apreciar que una parte de la población carece de servicios públicos básicos (agua potable y drenaje sanitario). Si se toma en consideración que el ARCT opera a su máxima capacidad, en el futuro cuando éste sea rebasado, la calidad de vida y de desarrollo de la población implicará soluciones cada vez más drásticas.
Viviendas con drenaje | 397,985 | 19,500
Viviendas sin drenaje | 8,269 | 875
Viviendas con agua | 395,713 | 18,343
Viviendas sin agua | 10,575 | 2,078

Fuente: elaboración propia con datos de INEGI, 2015.

Los datos oficiales de INEGI son inconsistentes para fundamentar diagnósticos de agua potable y drenaje sanitario cuando son la única fuente de información oficial, por consiguiente, el contar con datos complementarios del Organismo Operador (CEA-BC) mejorará la calidad de la información. Por ejemplo, en el CUADRO 43 existe una disparidad entre el número de viviendas sin provisión de agua entubada y drenaje sanitario. Dado que la composición del agua residual es 99% agua y 1% materia orgánica, es imprescindible contar con el vital líquido para su evacuación. Datos oficiales muestran que hay más viviendas con drenaje que aquellas que cuentan con conexión de agua potable.

Cobertura de agua potable y drenaje sanitario

En el MAPA 11 se representa cartográficamente la distribución porcentual de la población que aún no se encuentra conectada al drenaje municipal de Tijuana; en ello se observa una tendencia radial en la cobertura de drenaje, en el que la zona periferia tiene a concentrar los mayores porcentajes de ausencia y la zona central con más predominio de cobertura de drenaje.

MAPA 11 Distribución espacial de la población que no está conectada al sistema de drenaje en Tijuana

% Población no drenaje

0 - 0.99
0.99 - 4.99
5 - 9.99
10 - 24.99
25 - 100

Fuente: Cartografía de INEGI, CONAPO y CONABIO, Sistema de coordenadas: GCS WGS 1984, Datum: GS19847.
Ahora bien, el siguiente gráfico (ver MAPA 12), representa cartográficamente la distribución porcentual de la población que no se encuentra conectada al sistema de drenaje y agua entubada municipal de la ciudad de Tijuana; en él se observa la misma tendencia que la cobertura de drenaje, pero incorporando en la zona sur y suroeste las zonas con mayores niveles de ausencia de agua entubada y que corresponden mayormente a las zonas rurales de la ciudad de Tijuana.

MAPA 12 Distribución espacial de la población que no está conectada al drenaje y no disponen de agua entubada en la vivienda en Tijuana

Fuente: Cartografía de INEGI, CONAPO y CONABIO, Sistema de coordenadas: GCS WGS 1984, Datum: GS19847.

En la distribución porcentual de la población que aún no se encuentra conectada al drenaje municipal de Tecate (ver MAPA 12), se observa una tendencia asimétrica en la cobertura de drenaje, que se refleja en las zonas este, sureste y suroeste del municipio, contemplando las zonas urbanas y rurales. Asimismo, se puede observar la distribución porcentual de la población que además carece de agua entubada en Tecate; existe una coincidencia en la repartición de ambos servicios, predominando su ausencia en las zonas sureste y suroeste de Tecate (Ver Mapa 13 y 14).
Áreas carentes de conexión a la red de agua potable

El uso del agua en Tijuana constituye un factor importante para entender la generación de aguas residuales en las áreas de cobertura total de servicios (agua entubada y alcantarillado), así como para entender las consecuencias medioambientales en las áreas carentes de alguno de estos servicios (drenaje, por lo común). La cantidad de agua
consumida por habitante se relaciona principalmente con la presencia de una conexión a la red de agua potable. Aquellos con conexión consumen alrededor de 140 litros por persona por día, los que carecen de conexión a la red consumen una cantidad muy inferior, poco más de 50 litros por día.

En áreas no conectadas a la red de agua, las personas adquieren el agua por medio de “pipas”. Una vez abastecida, el agua es almacenada en tambos de 200 litros o bien, en tanques a nivel o por debajo de la superficie del suelo llamados “pilas” o “cisternas”, cuya capacidad oscila entre 5 y 15 metros cúbicos. La presencia de cualquiera de estas dos formas de almacenamiento separa claramente las viviendas en dos niveles socioeconómicos: aquellos que deben almacenar el agua en tambos cuentan con menos recursos, mientras que quienes cuentan con cisternas disponen de mayores recursos.

Esta diferencia en el almacenamiento crea una importante paradoja, los hogares con menos recursos pagan más por la misma cantidad de agua que los hogares con mayores recursos, dando como consecuencia una reducción aún mayor en el consumo de agua. Alberto Pombo (Pombo, 2004), estimó en el año de 1996 que, en las áreas periurbanas de la ciudad de Tijuana, las viviendas sin conexión a la red de agua municipal compraban el agua total de la pipa (100 lts) a $1.30 pesos (M.N) (viviendas con pila); sin embargo, si se compraba por tambo el costo de 100 lts de agua ascendía a $3.00 pesos (M/N).

Estas diferencias en costo del agua y capacidad económica constituyen la principal diferenciación en el consumo de las zonas periurbanas carentes del servicio de agua potable entubada, en el que evidentemente las viviendas con capacidad económica para costear la construcción de una pila consumen mucha más agua que las viviendas que deben recurrir al uso de tambos para el almacenamiento de la misma. El consumo promedio de agua en las áreas marginales es de aproximadamente 30 litros per cápita por día (lpcd), lo cual significa que un gran número de viviendas se sitúa por debajo de dicho valor de consumo. Resulta importante recordar que la Organización Mundial de la Salud (OMS) estimó el consumo mínimo de agua para la población saludable en 50 lpcd.

Recomendaciones

El Programa Estatal Hídrico 2008-2013 dice textualmente que: “Las políticas que permitirían alcanzar los objetivos planteados, son las siguientes:

- Planeación integral del uso y manejo del agua, mediante la vinculación interdisciplinaria, interinstitucional y la participación social.
- Programación hidroagrícola a través de la vinculación interinstitucional y la participación social.
- Participación de la sociedad en la planeación, programación, el seguimiento al cumplimiento de los objetivos, y en el financiamiento de las obras y acciones que la benefician.
• Saneamiento y fortalecimiento de las finanzas y de los sistemas operadores con el objetivo de lograr su autosuficiencia.

• Tarifas adecuadas al costo real y financiero del servicio en el corto y mediano plazo.

• Simplificación administrativa.

• Desregulación.

• Transparencia en la información sobre disponibilidad, uso y manejo del agua, así como del ejercicio de los recursos.

• Instituir la investigación y capacitación en materia de agua.

• Concurrencia presupuestal y financiera de la federación, los Estados, los municipios y la iniciativa privada.

• Seguimiento y evaluación de los Consejos Técnico Consultivo del sector Agua de la Frontera Norte y Consultivo del Agua del Estado de Baja California.

• Restauración, conservación y uso sustentable de los acuíferos.

• Desarrollo de la cultura del agua de acuerdo a las características de la región y el Estado.”

Toda planificación a largo plazo en la administración de los recursos hídricos debe considerar la posibilidad real de una reducción significativa en los volúmenes del Río Colorado el cual representa cerca del 80 % del agua utilizada en el Estado. Las posibles acciones que permitirían continuar con el crecimiento económico y demográfico del Estado son:

• En el corto término, para abastecerse de agua potable los desarrollos de lujo muy probablemente van a desalar agua de mar aunque con un gran consumo de energía y generando un problema de contaminación al disponer de las salmueras resultantes del proceso.

• Se generan importantes volúmenes de aguas negras que deberán ser reutilizados ya sea para usos de irrigación o mediante tratamientos avanzados para la recarga de acuíferos.

• Aumentar la eficiencia de los usos de agua en las zonas urbanas. Sin embargo se debe tener en cuenta que el consumo del agua por habitante en Baja California es muy cercano al mínimo recomendado por la Organización Mundial de la Salud (150 litros por habitante por día). Las pérdidas en los sistemas de transmisión de agua si bien se pueden y deben reducir estas oscilan entre el 15 y el 26% con una media estatal del 22%. Cuando se consideran que una muy buena administración de un sistema de agua tiene alrededor del 15-20% de pérdida, los beneficios marginales son muy reducidos.

• El agua residual, convenientemente tratada, podría utilizarse para rellenar acuíferos o para frenar la intrusión salina como se hace en Orange County (California), sin embargo, para adoptarse esta propuesta se deberá superar la barrera sicológica de la población (del toilette a su llave).
Acciones de Política Pública

El planeamiento tradicional (el pasado es el modelo del futuro)

Baja California presenta variaciones importantes en volúmenes de precipitación de estación a estación y de año a año, los primeros proyectos de infraestructura hídrica se construyeron principalmente para solucionar los excesos de lluvia o la falta de la misma. La experiencia, la observación personal, el conocimiento acumulado de antiguos pobladores fueron fuentes importantes de información ante la ausencia de registro sistemático de datos. Con los años se mejoró los sistemas de registro, sin embargo, el principal supuesto a la hora de la toma de decisiones fue que los registros del pasado constituían buenos indicadores de la frecuencia, duración y magnitud de eventos futuros de sequía o inundaciones. Esos datos se utilizaron para modelar condiciones futuras con las que se tomaron y toman las decisiones de administración de los recursos hídricos, la planeación de obra de infraestructura destinada a la protección de la población civil se enfocó principalmente a la reducción de daños materiales y personales. Estos proyectos se diseñaron para controlar y capturar escorrentías utilizando estructuras como diques, canales, etc. Estos proyectos si bien cumplen con su tarea de reducir los daños a la población también produjeron consecuencias no deseadas como la destrucción de ecosistemas, cambios en los patrones de erosión y sedimentación de los cauces.

Mediante este enfoque particular se tiende a subestimar los riesgos causados por eventos aleatorios como terremotos, inundaciones torrenciales, o sequías extremas. En todos los modelos de cambio climático, se enfatiza una mayor variabilidad de eventos extremos, lo que hace que a futuro sea muy importante utilizar una visión diferente en la planeación para el manejo de los recursos hídricos.

Planeación novedosa- Anticipar los cambios

Frente a los cambios en las condiciones climáticas presentes y futuras, el enfoque tradicional de predecir el futuro basándose exclusivamente en proyecciones matemáticas de datos del pasado probablemente no funcione en el futuro, las estrategias para el futuro manejo del agua en Baja California deberán ser dinámicas, adaptables y con visión de largo término, así mismo las estrategias deben ser comprensivas e integrar los aspectos físicos, biológicos y sociales. Esta nueva perspectiva deberá incorporar factores de incertidumbre, riesgo y sustentabilidad para la planeación.

La planeación a futuro de la administración de los recursos hídricos enfrenta grandes incertidumbres tales como de qué manera va a variar la demanda de agua por sector, cuáles serán las consecuencias ecológicas de esos usos de agua, qué desastres naturales podrían afectar el suministro de agua y de qué manera el cambio climático global afectara la disponibilidad de agua, los usos de agua, la calidad de agua así como los distintos ecosistemas. Con el fin de anticipar y reducir las incertidumbres a futuro y poder desarrollar estrategias de manejo que tomen en consideración los cambios climáticos, la Comisión Estatal del Agua deberá incorporar información sobre el cambio climático en sus procesos de planeamiento para reducir la incertidumbre. Los modelos climáticos desarrollados por
el Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), contenidos en el Plan Estatal de Acción Climática para Baja California, deberán incorporarse a la planeación de la Comisión Estatal de Agua.

Se pueden reducir los riesgos a eventos extremos si se reduce la incertidumbre en la planeación, por ejemplo, mediante un manejo adecuado de las represas del Estado se puede prevenir inundaciones catastróficas y reducir los daños económicos a la población. Si se reconoce que los cambios climáticos están ocurriendo y van a seguir a futuro agregando un factor de riesgo e incertidumbre a la planeación del manejo de los recursos hídricos, deberán ser dinámicos con capacidad de adaptarse a las nuevas condiciones a largo plazo y reducir la incertidumbre.

Reconocer y reducir la incertidumbre

Existen dos tipos de incertidumbre, la primera se refiere a eventos aleatorios tales como terremotos o inundaciones, la incertidumbre sobre la ocurrencia de estos fenómenos no se puede reducir mediante colectando la mayor información sobre los mismos. Sin embargo los datos sí pueden permitir una mayor cuantificación de la incertidumbre. El segundo tipo de incertidumbre se debe a la falta de conocimiento científico, este tipo de incertidumbre se conoce como epistemológica, en principio esta incertidumbre se reduce significativamente con la colecta de más información.

Para los fines de la planeación es muy importante conocer los cambios que se van a producir a futuro y su incertidumbre inherente, se debe considerar de qué manera se va a producir las variaciones si los cambios van a ser graduales sobre un largo periodo de tiempo o si éstos van hacer más rápidos y van a producirse en un corto tiempo. Ejemplos de cambios graduales son las variaciones en la concentración de población en las diferentes regiones, variaciones en el tipo y cantidad de las cosechas o cambios en el patrón de precipitaciones pluviales o variaciones en el nivel del mar. Cambios abruptos podrían ser terremotos, inundaciones, sequías, fallas catastróficas de equipos (bombas del Acueducto del Río Colorado-Tijuana), derrames de sustancias químicas, actos intencionales de destrucción, etc.

Evaluar los riesgos

Si bien es imposible incorporar todos los riesgos e incertidumbres dentro de la planeación, existen algunas metodologías que permiten incorporar a los mismos en los análisis de dichas metodologías. La enumeración directa de los riesgos, análisis de sensibilidad, análisis de escenario, análisis probabilístico, teoría de juegos, metodología de decisión robusta, simulación estocástica, entre otros, son ejemplo de ellos.

Administrar para la sustentabilidad

El término sustentabilidad o desarrollo sustentable o uso sustentable de los recursos pueden tener significados diferentes de acuerdo a la perspectiva de quien lo usa. En general un proceso de sistema sustentable se entiende que puede seguir funcionando indefinidamente. La sostenibilidad consiste en satisfacer las necesidades de la
generación actual sin sacrificar la capacidad de satisfacer esas mismas necesidades a las futuras generaciones. La administración de usos hídricos en el Estado se deberá basar en tres principios fundamentales, el primero, utilizar el agua eficientemente, el segundo, es proteger la calidad del agua para obtener la máxima utilidad de los recursos existentes y por ultimo, incrementar la importancia asignada al medio ambiente.

Sustentabilidad en Baja California

El Programa Estatal Hídrico 2008-2013 dice textualmente: "Un Estado que cuenta con seguridad en el suministro del agua que requiere para su desarrollo, que la utiliza de manera eficiente, reconoce su valor estratégico y económico, protege los cuerpos de agua y preserva el medio ambiente para las futuras generaciones.

La visión anterior considera el valor esencial que tiene el agua como recurso indispensable para el desarrollo urbano y bienestar social, su importancia como un elemento estratégico en el desarrollo de las diferentes actividades productivas: agrícola, industrial, acuícola, generación de energía eléctrica, pesca y turismo, el derecho que tienen las futuras generaciones a contar con el agua que requieran para su bienestar y desarrollo, así como el reconocimiento del medio ambiente como un usuario del agua".

Indicadores de sustentabilidad

Los indicadores de sustentabilidad son una forma de medir los avances, proveen una medida de la calidad del manejo, la capacidad de este de obtener los objetivos a largo y mediano termino en los campos social, económico y de medio ambiente. En otras palabras, permite saber que tan cerca o lejos se está de un manejo sustentable del recurso. Algunos ejemplos de indicadores de sustentabilidad podrían ser:

A. Disponibilidad de agua.
 - Suficiente agua para uso urbano, rural y el medio ambiente.
 - Agua para funciones ambientales.
 - Sustentabilidad en el uso del agua.

B. Calidad del agua
 - Calidad de agua para usos humanos.
 - Calidad de agua para el medio ambiente.
 - Sostenibilidad de la calidad del agua.

C. Usos humanos y salud
 - Extracción y uso del agua.
 - Usos humanos del agua y el medio ambiente.
• Dependencia de la existencia del recurso.
• Salud humana.
• Mejoramiento de tecnologías de disposición de excretas humanas
• Difusión de innovaciones tecnológicas de saneamiento

D. Salud del Medio Ambiente
• Índices de condición biológica.
• Cantidad y calidad de los recursos biológicos.

E. Infraestructura e instituciones
• Capacidad y confiabilidad de la infraestructura
• Eficiencia institucional

Instituciones Responsables

Organismos Normativos

Comisión Nacional del Agua (CONAGUA)

La CONAGUA es un órgano administrativo desconcentrado de la Secretaría de Medio Ambiente y Recursos Naturales, que se regula con la Ley de Aguas Nacionales y su Reglamento 2004, así como de la Ley Orgánica de la Administración Pública Federal y su Reglamento Interior. La CONAGUA tiene como objetivo ejercer las atribuciones correspondientes a la autoridad en materia de agua, constituyéndose como Órgano Superior con carácter técnico, normativo y consultivo de la Federación, en materia de gestión de los recursos hídricos, su administración, regulación, control y protección del recurso hídrico de dominio público. Se organiza para ejercer sus atribuciones a Nivel Nacional y a Nivel Regional Hidrológico Administrativo.

En el Península de Baja California ejerce sus atribuciones, funciones y actividades operativas, ejecutivas, administrativas del contexto federal en materia de agua y su gestión, a través de la Dirección General del Organismo de Cuenca de la Península de Baja California, trabajando coordinadamente con la Comisión Estatal del Agua de Baja California (CEA-B.C.), ambas con oficinas centrales en la ciudad de Mexicali, Baja California.

Comisión Estatal del Agua de Baja California (CEA-B.C.)

Organismo público descentralizado con personalidad jurídica y patrimonio propio, mismo que por decreto expedido por el Ejecutivo Estatal, publicado en el Periódico Oficial del Estado del 27 de enero de 2006, se reformaron diversos artículos mediante los cuales se constituye la Comisión Estatal del Agua de Baja California (CEA-B.C.), con la finalidad de integrar administrativa y operacionalmente a esta comisión a la Ex Comisión de Servicios de Agua del Estado de Baja California (COSAE), asumiendo por lo tanto la CEA-B.C. las funciones de planear y coordinar las acciones
necesarias para que la población cuente con la infraestructura hidráulica suficiente, así como normar, organizar y ejecutar la política de agua en bloque en el Estado.

De tal forma que la operación y mantenimiento de los acueductos en el Estado, ejecución de obras, administración, operación y mantenimiento de acueductos intermunicipales, la planeación y la actualización de fuentes de energía para conducción de agua en bloque, entre otras funciones, son responsabilidad de la CEA-B.C.

Organismos Operadores de los Sistemas

Comisión Estatal de Servicios Públicos de Tecate (CESPTE)
Se desincorpora de la CESPT en junio de 1992, en la actualidad cuenta con 175 empleados y está integrada por tres subdirecciones: Administrativa y Financiera, Técnica, y Comercial; tiene el apoyo técnico administrativo de las áreas de Recaudación de Rentas, Auditoría Interna, Comunicación Social y Desarrollo Institucional.

Comisión Estatal de Servicios Públicos de Tijuana (CESPT)
Se crea en diciembre de 1966, atiende a los municipios de Tijuana y Playas de Rosarito, cuenta con 1,730 empleados y está conformada por seis subdirecciones: Administrativa y Financiera, Planeación, Operación y Mantenimiento, Construcción, Comercial y Saneamiento; cuenta además con las áreas Jurídica, Auditoría Interna, Relaciones Públicas, Informática y Desarrollo Institucional. Debido a la estructura de los sistemas hidráulicos, no ha sido posible desincorporar los sistemas y funciones que realiza la CESPT en el municipio de Playas de Rosarito.
El agua y la salud son dos temas asociados, sobretodo si existe un mal sistema de dotación y disposición final del agua servida puede generar problemas de salud a la población que esta en contacto directo al agua. El CUADRO 44 presenta información histórica sobre el número de las principales enfermedades asociadas al manejo de las aguas en la ciudad de Tijuana.

CUADRO 44 Número de casos de enfermedades hídricas en Tijuana

<table>
<thead>
<tr>
<th>Enfermedad</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amibas intestinales</td>
<td>3,699</td>
<td>2,881</td>
<td>1,485</td>
<td>1,715</td>
<td>1,636</td>
<td>1,202</td>
</tr>
<tr>
<td>Escabiosis</td>
<td>3,605</td>
<td>2,140</td>
<td>1,391</td>
<td>1,187</td>
<td>1,275</td>
<td>2,103</td>
</tr>
<tr>
<td>Infección intestinal por otros organismos</td>
<td>52,699</td>
<td>36,130</td>
<td>22,110</td>
<td>36,930</td>
<td>33,084</td>
<td>31,858</td>
</tr>
<tr>
<td>Otras helmintias</td>
<td>4,215</td>
<td>3,513</td>
<td>2,500</td>
<td>1,812</td>
<td>1,651</td>
<td>1,928</td>
</tr>
</tbody>
</table>

Las enfermedades transmitidas por el agua pueden ser causadas por protozoarios, virus, bacterias o parásitos intestinales. Una persona puede enfermarse si bebe agua contaminada con estos organismos, si ingiere alimentos sin cocinar que hayan estado en contacto con esta agua o por malos hábitos de higiene que permiten la diseminación de la enfermedad por contacto humano directo o indirecto. El CUADRO 45 contiene las estadísticas sobre enfermedades de transmisión hídrica en la ciudad de Tijuana, B.C. durante el periodo 2011-2016 (CESPT, 2017).

CUADRO 45 Número de casos de enfermedades hídricas en Tijuana, B.C.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Enfermedades intestinales por otros organismos</td>
<td>40,667</td>
<td>50,670</td>
<td>51,599</td>
<td>64,036</td>
<td>52,397</td>
<td>43,623</td>
</tr>
</tbody>
</table>

Los datos del CUADRO 45 muestran que los casos de enfermedades relacionadas con el consumo y manejo del agua para uso doméstico en Tijuana varían de un año a otro, pero siempre manteniendo un comportamiento más o menos homogéneo, esto puede estar relacionado con varios factores, por ejemplo, la intensidad de la estación de
calor, la supervisión del organismo operador del agua y el manejo del agua dentro de la vivienda sí como su disposición final.

Un elemento central en cuanto al manejo y uso del agua en la CRT es la calidad del recurso hídrico para los diferentes usuarios. El CUADRO 46 muestra los valores sobre calidad del agua en diferentes puntos de la Cuenca de acuerdo a monitoreos realizados por la CONAGUA durante el 2016. De esta forma se tiene que el volumen de agua que se entrega a partir del Acueducto Río Colorado Tijuana reúne los requerimientos para su uso en el medio urbano, es decir, tanto para consumo humano como industrial y comercial. Los valores en la Presa El Carrizo, vaso regulador de los volúmenes del acueducto, son los más bajos en cuanto a demanda bioquímica (DBO) y química de oxígeno (DQO), así como los valores de sólidos en suspensión totales (SST), por lo que su calidad es excelente para consumo humano.

En contraparte, los valores en las corrientes de agua como las del Río Tijuana y Río Tecate no reúnen los valores de calidad debido a que ya fueron utilizados por los usuarios y ya han sido tratadas como agua residual en algunas de las plantas de tratamiento de Tecate o de Tijuana. En este sentido, los valores del agua en el Río Tecate (Río Tecate 2) presenta una mala calidad de agua al sobrepasar los 30 mg/L de DBO y considerarse como aguas superficiales con descargas de aguas residuales crudas, principalmente de origen municipal. La misma situación se presenta en el punto Río Tijuana 2 y con valores mucho más altos en el punto de muestreo Arroyo San Antonio de los Buenos.
CUADRO 46 Calidad de agua en la Cuenca del Río Tijuana (2016)

<table>
<thead>
<tr>
<th>Sitio</th>
<th>Longitud</th>
<th>Latitud</th>
<th>DBO (mg/L)</th>
<th>DQQ (mg/L)</th>
<th>SST</th>
<th>Calidad DBO</th>
<th>Calidad DQQ</th>
<th>Calidad SST</th>
<th>Calidad SDT</th>
<th>Cumple con DBO</th>
<th>Cumple con DQQ</th>
<th>Cumple con SST</th>
<th>Semáforo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presa El Carrizo 5</td>
<td>116.686</td>
<td>070</td>
<td>32.477</td>
<td>541</td>
<td>0.5</td>
<td>7.75</td>
<td>2.5</td>
<td>Excelente</td>
<td>Excelente</td>
<td>SI</td>
<td>SI</td>
<td>SI</td>
<td>Verde</td>
</tr>
<tr>
<td>Presa El Carrizo 4</td>
<td>116.676</td>
<td>203</td>
<td>32.477</td>
<td>477</td>
<td>1.82</td>
<td>7.25</td>
<td>17.5</td>
<td>Excelente</td>
<td>Excelente</td>
<td>SI</td>
<td>SI</td>
<td>SI</td>
<td>Verde</td>
</tr>
<tr>
<td>Presa El Carrizo 2</td>
<td>116.678</td>
<td>34</td>
<td>32.485</td>
<td>6</td>
<td>2.36</td>
<td>6.75</td>
<td>2.5</td>
<td>Excelente</td>
<td>Excelente</td>
<td>SI</td>
<td>SI</td>
<td>SI</td>
<td>Verde</td>
</tr>
<tr>
<td>Presa El Carrizo 3</td>
<td>116.690</td>
<td>847</td>
<td>32.488</td>
<td>283</td>
<td>0.5</td>
<td>7.75</td>
<td>2.5</td>
<td>Excelente</td>
<td>Excelente</td>
<td>SI</td>
<td>SI</td>
<td>SI</td>
<td>Verde</td>
</tr>
<tr>
<td>Río Tecate</td>
<td>116.673</td>
<td>861</td>
<td>32.546</td>
<td>694</td>
<td>27.5</td>
<td>138</td>
<td>55.75</td>
<td>Aceptable</td>
<td>Contaminada</td>
<td>SI</td>
<td>NO</td>
<td>SI</td>
<td>Rojo</td>
</tr>
<tr>
<td>Río Tecate 2</td>
<td>116.650</td>
<td>972</td>
<td>32.552</td>
<td>444</td>
<td>45.2</td>
<td>174</td>
<td>80</td>
<td>Contaminada</td>
<td>Contaminada</td>
<td>SI</td>
<td>NO</td>
<td>SI</td>
<td>Rojo</td>
</tr>
<tr>
<td>Río Tijuana</td>
<td>117.032</td>
<td>222</td>
<td>32.538</td>
<td>556</td>
<td>35.7</td>
<td>149.5</td>
<td>86.665</td>
<td>Contaminada</td>
<td>Contaminada</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>Rojo</td>
</tr>
<tr>
<td>Río Tijuana 4</td>
<td>116.979</td>
<td>389</td>
<td>32.515</td>
<td>917</td>
<td>18.0</td>
<td>111</td>
<td>70.25</td>
<td>Aceptable</td>
<td>Contaminada</td>
<td>SI</td>
<td>NO</td>
<td>SI</td>
<td>Rojo</td>
</tr>
<tr>
<td>Arroyo Alamar 3</td>
<td>116.970</td>
<td>333</td>
<td>32.515</td>
<td>139</td>
<td>8.81</td>
<td>99.5</td>
<td>51.665</td>
<td>Aceptable</td>
<td>Contaminada</td>
<td>SI</td>
<td>NO</td>
<td>SI</td>
<td>Rojo</td>
</tr>
<tr>
<td>Río Tijuana 3</td>
<td>116.968</td>
<td>639</td>
<td>32.514</td>
<td>222</td>
<td>16.7</td>
<td>135.5</td>
<td>70.75</td>
<td>Aceptable</td>
<td>Contaminada</td>
<td>SI</td>
<td>NO</td>
<td>SI</td>
<td>Rojo</td>
</tr>
<tr>
<td>Río Tijuana 2</td>
<td>116.927</td>
<td>992</td>
<td>32.473</td>
<td>983</td>
<td>44.7</td>
<td>157</td>
<td>69.58</td>
<td>Contaminada</td>
<td>Contaminada</td>
<td>SI</td>
<td>NO</td>
<td>SI</td>
<td>Rojo</td>
</tr>
<tr>
<td>Río Tijuana 1</td>
<td>116.905</td>
<td>972</td>
<td>32.454</td>
<td>167</td>
<td>10.7</td>
<td>64</td>
<td>19</td>
<td>Aceptable</td>
<td>Contaminada</td>
<td>SI</td>
<td>NO</td>
<td>SI</td>
<td>Rojo</td>
</tr>
<tr>
<td>Presa Abelardo L. Rodríguez</td>
<td>116.909</td>
<td>111</td>
<td>32.443</td>
<td>889</td>
<td>2.13</td>
<td>61.5</td>
<td>15.25</td>
<td>Excelente</td>
<td>Contaminada</td>
<td>SI</td>
<td>NO</td>
<td>SI</td>
<td>Rojo</td>
</tr>
<tr>
<td>Presa Abelardo L. Rodríguez 3</td>
<td>116.911</td>
<td>289</td>
<td>32.438</td>
<td>222</td>
<td>3.89</td>
<td>73.5</td>
<td>19.5</td>
<td>Buena calidad</td>
<td>Contaminada</td>
<td>SI</td>
<td>NO</td>
<td>SI</td>
<td>Rojo</td>
</tr>
<tr>
<td>Presa Abelardo L. Rodríguez 1</td>
<td>116.905</td>
<td>75</td>
<td>32.438</td>
<td>583</td>
<td>2.58</td>
<td>68</td>
<td>36.67</td>
<td>Excelente</td>
<td>Contaminada</td>
<td>SI</td>
<td>NO</td>
<td>SI</td>
<td>Rojo</td>
</tr>
<tr>
<td>Presa Abelardo L. Rodríguez 2</td>
<td>116.898</td>
<td>778</td>
<td>32.437</td>
<td>166</td>
<td>3.92</td>
<td>62.5</td>
<td>43</td>
<td>Buena calidad</td>
<td>Contaminada</td>
<td>SI</td>
<td>NO</td>
<td>SI</td>
<td>Rojo</td>
</tr>
<tr>
<td>Arroyo confluencia con Arroyo El Florido</td>
<td>116.879</td>
<td>056</td>
<td>32.449</td>
<td>166</td>
<td>7.26</td>
<td>47</td>
<td>12.165</td>
<td>Aceptable</td>
<td>Contaminada</td>
<td>SI</td>
<td>NO</td>
<td>SI</td>
<td>Rojo</td>
</tr>
<tr>
<td>Descarga del ARCT-Potabilizadora el Florido</td>
<td>116.827</td>
<td>508</td>
<td>32.468</td>
<td>067</td>
<td>0.5</td>
<td>2.5</td>
<td>2.5</td>
<td>Excelente</td>
<td>Excelente</td>
<td>SI</td>
<td>SI</td>
<td>SI</td>
<td>Verde</td>
</tr>
<tr>
<td>Presa El Carrizo</td>
<td>116.697</td>
<td>211</td>
<td>32.479</td>
<td>9</td>
<td>0.5</td>
<td>12.75</td>
<td>2.5</td>
<td>Excelente</td>
<td>Buena calidad</td>
<td>SI</td>
<td>SI</td>
<td>SI</td>
<td>Verde</td>
</tr>
<tr>
<td>Arroyo Alamar 1</td>
<td>116.925</td>
<td></td>
<td>32.515</td>
<td>55</td>
<td>12.5</td>
<td>83.5</td>
<td>24</td>
<td>Aceptable</td>
<td>Contaminada</td>
<td>SI</td>
<td>NO</td>
<td>SI</td>
<td>Rojo</td>
</tr>
<tr>
<td>Estación</td>
<td>X</td>
<td>Y</td>
<td>TD</td>
<td>VD</td>
<td>TTD</td>
<td>Contaminación</td>
<td>Salud</td>
<td>Color</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------------</td>
<td>----------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Playa frente al arroyo San Antonio de los Buenos</td>
<td>-117.107892</td>
<td>32.446144</td>
<td>ND</td>
<td>ND</td>
<td>11.5</td>
<td>ND</td>
<td>Excelente</td>
<td>Verde</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arroyo San Antonio de los Buenos</td>
<td>-117.107151</td>
<td>32.446733</td>
<td>200.62</td>
<td>484</td>
<td>212.5</td>
<td>Fuertemente contaminada</td>
<td>Fuertemente contaminada</td>
<td>Contaminada</td>
<td>ND</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>Rojo</td>
</tr>
<tr>
<td>Tijuana I</td>
<td>-117.124028</td>
<td>32.533861</td>
<td>ND</td>
<td>ND</td>
<td>7.75</td>
<td>ND</td>
<td>Excelente</td>
<td>Verde</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arroyo Alamar 2</td>
<td>-116.898944</td>
<td>32.528694</td>
<td>5.4</td>
<td>64.5</td>
<td>40.5</td>
<td>Buena calidad</td>
<td>Contaminada</td>
<td>Buena calidad</td>
<td>ND</td>
<td>SI</td>
<td>NO</td>
<td>SI</td>
<td>Rojo</td>
</tr>
<tr>
<td>Presa El Carrizo 1</td>
<td>-116.685517</td>
<td>32.481095</td>
<td>1.65</td>
<td>9.25</td>
<td>2.5</td>
<td>Excelente</td>
<td>Excelente</td>
<td>Excelente</td>
<td>ND</td>
<td>SI</td>
<td>SI</td>
<td>SI</td>
<td>Verde</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia con datos de CONAGUA, 2017, Red Nacional de Monitoreo de la Calidad de las Aguas Nacionales, en: https://datos.gob.mx/busca/dataset/red-nacional-de-monitoreo-de-la-calidad-de-las-aguas-nacionales, consultado el 2 de diciembre de 2018.
Residuos sólidos

La población total de la CRT es de 1,679,145 habitantes en 2010, si se toma en cuenta que el promedio de generación de basura al día en Baja California fue de 0.864 kg por persona, entonces se debieron producir aproximadamente 1,680 toneladas de residuos sólidos al día (1 kg por persona). Para su recolección, transporte y disposición final se debe de contar con un sistema eficiente que pueda atender este servicio y evitar con ello problemas de salud pública y la contaminación de cuerpos y corrientes de agua.

La ciudad de Tijuana recolecta diariamente 1,468 toneladas de basura, atendiendo a 851 colonias, y un volumen anual de 530,000 toneladas al año, contando con una flota de 110 camiones recolectores y un relleno sanitario en Valle de las Palmas (Frontera, 23 de diciembre de 2017). El servicio cubre el 85% de la ciudad (UniradioInforma, 5 de noviembre de 2017), por lo que el 15% de la basura no recolectada, es decir, más de 250 toneladas llega a depositarse en tiraderos clandestinos, terrenos baldíos, vialidades y cañadas de la ciudad. Según el Plan Municipal de Desarrollo de Tijuana 2017-2019, la recolección de basura es de 1,500 toneladas de basura al día, con una cobertura del 95% sirviendo a 730 colonias. Un elemento central en materia de la generación de residuos sólidos es que solamente entre una o dos veces por semana se recolecta la basura en las colonias de Tijuana.

Para la disposición final de los desechos sólidos, la ciudad de Tijuana cuenta con un relleno sanitario en la zona de Valle de las Palmas (al sureste de la ciudad), mismo que fue construido bajo los criterios de la Norma Oficial Mexicana NOM-083-SEMARNAT-72, sin embargo su localización y distancia de recorrido se ha traducido en una mayor necesidad de localización de estaciones de transferencia. Actualmente el relleno sanitario con una superficie de 1'000,005.245 m², del cual cuenta con 14 celdas en proyecto de las cuales 5 se encuentran habilitadas, este cuenta con una capacidad máxima de 27'882,766.36 m², así mismo cuenta con espacios complementarios para su operación tales como: 110 m² para oficinas y 40 m² de talleres y celdas construidas (5) con una superficie de 404,410.81 m². Este relleno fue proyectado para una vida útil de 20 años, misma que se cumplirá para el año 2023; sin embargo es necesario prever alternativas para el manejo y disposición de residuos tales como unidades de transferencia y rellenos sanitarios (IMPLAN, 2010).

El relleno sanitario Verde Valle (basurero Nueva Aurora) se encuentra en etapa de clausura, es decir, el sellado del área para la disposición en el sitio, debido a que cumplió con su vida útil. Cuenta con las instalaciones para la recuperación de biogas y lixiviados, en cuanto a su utilización y uso final del sitio deberá ser acorde a lo que establece la norma (IMPLAN, 2010).
CUADRO 47 Residuos sólidos recibidos en relleno sanitario de Tijuana

<table>
<thead>
<tr>
<th>Unidades de transferencia</th>
<th>Tres (La Presa, Valle Sur y Colonia Libertad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cantidad recolectada por particulares (Ton/día)</td>
<td>600</td>
</tr>
<tr>
<td>Cantidad recolectada por ayuntamiento (Ton/día)</td>
<td>1,164</td>
</tr>
<tr>
<td>Cantidad de residuos captados en rellenos sanitarios (Ton/día)</td>
<td>1,764</td>
</tr>
</tbody>
</table>

La ciudad de Tecate producía 74 toneladas de basura al día en 2013 (La Crónica de Mexicali, 10 de abril de 2013), llegando a las 88 toneladas en 2017, cubriendo el 90% de la ciudad, la disposición final de los residuos se realiza en un relleno a cielo abierto de 16 has, a 5 km al noroeste de la ciudad (Ayuntamiento de Tecate, 2017). Con base en estos datos, aproximadamente 10 toneladas de basura no son depositadas en el relleno, con lo que se suman a las 270,000 toneladas que ya existen en ese lugar, quedando depositadas en tiraderos clandestinos. Un elemento particular del municipio de Tecate, es que los habitantes de la zona rural deben de disponer de sus residuos sólidos de manera informal.

CUADRO 48 Infraestructura para el manejo de residuos sólidos urbanos en Tecate

<table>
<thead>
<tr>
<th>Sitio</th>
<th>Domicilio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centro de transferencia</td>
<td>Boulevard las Torres S/N Col. Guajardo, sobre la ladera del cerro “La Nopalera”</td>
</tr>
<tr>
<td>Tiraderos a cielo abierto (clandestinos)</td>
<td>Poblados La Rumorosa, “El Hongo”, “Mi Ranchito”, “Penitenciaría Estatal”, “Roca Magisterial”, El Testerazo, El Gandul, etc.</td>
</tr>
<tr>
<td>Tiradero Cerro Azul</td>
<td>Parcela 288, Km. 16 de la Carretera libre Tecate-Ensenada, en el poblado del Ejido Nueva Colonia Hindú (400,360.00 m²)</td>
</tr>
<tr>
<td>Basurero Municipal</td>
<td>Paso del Águila</td>
</tr>
</tbody>
</table>

La disposición final de residuos sólidos sin un manejo ambientalmente adecuado, es un problema frecuente en las ciudades mexicanas de la CRT, donde tan solo en Tijuana en 2012 se tienen registrados 200 tiraderos clandestinos (UniradioInforma, 5 de noviembre de 2012). La presencia de este tipo de residuos al aire libre puede generar problemas de salud pública, especialmente para la población que reside cerca de estos lugares, debido a la proliferación de fauna nociva y contaminación del suelo y aire; así mismo, los tiraderos clandestinos de basura provocan la contaminación del agua cuando en temporada de lluvias (noviembre-marzo) se registra la crecida de arroyos y ríos urbanos. Además de esta contaminación, que llega a afectar a las comunidades al otro lado de la línea internacional y del estuario del Río Tijuana, provoca la obstrucción de la infraestructura pluvial con lo que se presentan las inundaciones en zonas bajas de la CRT.

Por lo que respecta a los lugares no oficiales para disponer los residuos sólidos (tiraderos clandestinos), se tiene que durante 2017 y hasta el mes de agosto en Tijuana se habían clausurado 13 tiraderos clandestinos por parte de la Secretaría de Protección Ambiental del Gobierno del Estado de Baja California (SPABC). En el último caso registrado, el terreno saneado por la autoridad estatal tenía una superficie de 12,500 m² (UniradioInforma, 17 de agosto de 2017).
De acuerdo con la titular de la SPABC, Thelma Castañeda Custodio, “los tiraderos clandestinos son uno de los principales problemas de contaminación en el estado y sus propietarios pueden ser sujetos proceso legal para que reparen el daño ambiental y limpies el terreno. Además, quienes realicen este tipo de prácticas pueden ser multados con 200 hasta los 20 mil días de salario mínimo vigente en la entidad” (La Jornada de Baja California, 10 de abril de 2017).

Uno de los problemas más apremiantes de la ciudad de Tijuana, particularmente en la zona de cañones, laderas y terrenos baldíos, son las llantas de automóvil y otros desechos de manejo especial. Según el IMPLAN, “… En el Ejido Lázaro Cárdenas, de la delegación San Antonio de los Buenos, se estima que aproximadamente 3 millones de llantas no cuentan con un manejo y disposición adecuados. Durante el 2008 se realizaron actividades de saneamiento en ocho sitios de la ciudad, sobre el Blvd. Rosas Magallón se retiraron 50 toneladas de residuos, y en el Cañón de los Alacranes de la delegación Playas de Tijuana se retiraron 80 toneladas de residuos urbanos y manejo especial, además de la limpieza de cinco sitios que comprenden 485 toneladas de residuos domésticos y 15 toneladas de basura en el área que comprende el Arroyo Alamar, con recursos del Programa Frontera 2012” (IMPLAN, 2010).

Como una medida para solucionar el problema de la disposición final de llantas en cañadas y lotes baldíos en los municipios de Tijuana, Tecate y Playas de Rosarito, el gobierno del estado estableció un Centro de Acopio Temporal de Neumáticos de Desecho de Tijuana (CATENED II), disminuyendo los tiempos de traslado hasta el CATENED I, ubicado en el municipio de Mexicali. La falta de infraestructura para el aprovechamiento y reciclaje de los neumáticos de desecho ha ocasionado que dicho manejo no sea eficiente, persistiendo aún el depósito inadecuado en sitios no autorizados. En los centros de acopio no solo se reciben llantas de las empresas importadoras sino también de público en general, así como de organizaciones de la sociedad civil (OSC´s) y Dependencias de Gobierno que solicitan el apoyo de la SPA para recibir llantas de desecho provenientes de acciones de limpieza.
CUADRO 49 Recolección de neumáticos usados en el CATENED II

<table>
<thead>
<tr>
<th>Año</th>
<th>Ingreso</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>122,547</td>
</tr>
<tr>
<td>2014</td>
<td>79,595</td>
</tr>
<tr>
<td>2015</td>
<td>135,897</td>
</tr>
<tr>
<td>Total</td>
<td>338,039</td>
</tr>
</tbody>
</table>

Sedimentos

El transporte de sedimentos es un proceso natural de los ríos y arroyos en la CRT, el cual es responsable en gran medida de la conformación de los cauces, trayectorias y acumulación de arenas y gravas en las zonas de poca pendiente. Sin embargo, la erosión de los suelos, a partir de las zonas altas de la cuenca, puede provocar problemas de arrastre de materiales con consecuencias económicas, sociales y ambientales. Un problema recurrente en la zona es que los sedimentos son los responsables de reducir la capacidad de almacenamiento de agua en las presas y de depositar residuos transportados hasta la línea de costa, en el estuario del Río Tijuana. Otra de las consecuencias de la sedimentación es la modificación de cauces que en algunas ocasiones puede provocar inundaciones, particularmente en las zonas bajas, al reducir el tamaño y desvío de los cauces.

La situación demográfica en la subcuenca Los Laureles ha tenido un particular impacto en diferentes aspectos ambientales a nivel binacional, debido a que se constituye generalmente de cañones y barrancas con pendientes pronunciadas, y suelos arenosos de escasa consolidación, situación que dificulta la cobertura de servicios aumentando la vulnerabilidad y el riesgo de la población ante desastres naturales. Cerca del 80% de la superficie de esta subcuenca presenta tasas de erosión o debajo de las 25 ton/ha/año, y aproximadamente el 6% de su superficie presenta tasas de erosión superiores a 100 ton/ha/año, material que llega al cauce y es transportado hacia el Valle del Río Tijuana en la ciudad de Imperial Beach, en virtud de que se encuentra localizado en la parte más baja de la cuenca, depositándose tanto en la zona anterior al cruce de la frontera como, los materiales finos, en la zona de la Reserva del Río Tijuana (Urs, 2012).

De manera particular, la subcuenca del arroyo Los Laureles en Tijuana ha presentado problemas recurrentes de arrastre de sedimentos y residuos sólidos que drenan hacia la parte de Imperial Beach, en la desembocadura del río Tijuana en California. La subcuenca Los Laureles tiene una superficie de 11.7 km² y se ubica en la porción noroeste de la ciudad de Tijuana, donde el 88% de su superficie se encuentra en territorio mexicano y el 12% en Estados Unidos. El relieve de la subcuenca está conformado por cañones y barrancas de pendientes pronunciadas y suelos arenosos de escasa consolidación, además de estar densamente poblada y con poca planeación urbana, lo que representa una alta exposición ante eventos hidrometeorológicos y que en frecuentes ocasiones se ha traducido en problemas de deslaves e inundaciones. La problemática permanente de la subcuenca se ve aggravada ya que el 80%
de la superficie presenta tasas de erosión o debajo de 25 toneladas por hectárea al año, y cerca del 6% de su superficie presenta tasas de erosión superiores a las 100 toneladas al año por hectárea (IMTA, IMPLAN, 2004).

FOTOGRAFÍA 41 Vista del cauce de la subcuenca Los Laureles, agosto de 2004

[Foto]

FOTOGRAFÍA 42 Vista del cauce de la subcuenca Los Laureles, noviembre de 2004

[Foto]

Un estudio realizado por la Junta Regional para el Control de Calidad del Agua de San Diego (San Diego Regional Water Quality Control Board-SDRWQCB), determinó que los sedimentos y la basura son los principales contaminantes en el estuario del Río Tijuana; por su parte la URS Corporation, a petición de la SDRWQCB, realizó un estudio en el 2012 donde estimó que las cargas de sedimentos transportados por el agua del Río Tijuana al entrar a Estados Unidos son de aproximadamente 500,000 ton/año, (ver CUADRO 50) lo que una buena parte llega hasta el Océano Pacífico, a través del estuario del Río Tijuana.

De acuerdo con el CUADRO 50, los sedimentos que llegan a la Presa Abelardo L. Rodríguez, en Tijuana, son mayores a los que se reportan en la Presa Barrett, en California, pero esto esta en función, entre otros elementos, a la
superficie de la cuenca que drenan en estos dos puntos, siendo mayor para el caso de la Presa Rodríguez. El mismo estudio realizado por URS Corporation concluye que se requiere mantener controles sobre las tasas de erosión en ambos lados de la frontera, con especial atención en el lado mexicano.

CUADRO 50 Carga de sedimentos del Río Tijuana en la frontera Estados Unidos-México

<table>
<thead>
<tr>
<th>Lugar de estimación de carga de sedimentos</th>
<th>Carga de sedimentos (ton/año)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Aguas arriba de la Presa Barrett</td>
<td>300,000</td>
</tr>
<tr>
<td>(2) Aguas debajo de la Presa Barrett</td>
<td>8,000</td>
</tr>
<tr>
<td>(3) Descarga de la Presa Barrett en el canal de concreto</td>
<td>70,000</td>
</tr>
<tr>
<td>(4) Aguas arriba de la Presa Abelardo L. Rodríguez</td>
<td>800,000</td>
</tr>
<tr>
<td>(5) Aguas debajo de la Presa Abelardo L. Rodríguez</td>
<td>20,000</td>
</tr>
<tr>
<td>(6) SPA (incluye las áreas de E. U y México aguas arriba de la frontera)</td>
<td>400,000</td>
</tr>
<tr>
<td>(7) Carga total de sedimentos (3) + (5) + (6)</td>
<td>500,000</td>
</tr>
<tr>
<td>(8) Total del área de estudio a la entrada del valle en condiciones naturales, sin considerar la influencia de las presas</td>
<td>1,300,000</td>
</tr>
</tbody>
</table>

Nota: SPA: Áreas de aporte de sedimentos

Uso recreativo

Uno de los principales atractivos turísticos en relación al uso del agua en la CRT son los balnearios, establecimientos que han diversificado la prestación de sus servicios más allá del uso de albercas y toboganes. Entre los principales servicios que se ofrecen son hospedaje, spa, salones de fiesta, caminatas, restaurantes, asadores, cata de vinos, etc. El CUADRO 51 muestra algunos ejemplos de balnearios o ranchos que ofrecen el uso del agua como forma de esparcimiento o descanso.

CUADRO 51 Principales balnearios en la Cuenca del Río Tijuana

<table>
<thead>
<tr>
<th>Establecimiento</th>
<th>Municipio</th>
<th>Cuenca</th>
</tr>
</thead>
<tbody>
<tr>
<td>El Vergel</td>
<td>Tijuana</td>
<td>Río Alamar</td>
</tr>
<tr>
<td>Albercas Campos</td>
<td>Tijuana</td>
<td>Río Tijuana</td>
</tr>
<tr>
<td>Alberca Las Palma</td>
<td>Tijuana</td>
<td>Río Tijuana</td>
</tr>
<tr>
<td>Albercas y cabañas Edén</td>
<td>Tijuana</td>
<td>Río Tijuana</td>
</tr>
<tr>
<td>Los Cactus</td>
<td>Tecate</td>
<td>El Florido</td>
</tr>
<tr>
<td>Los Alisos</td>
<td>Tecate</td>
<td>El Florido</td>
</tr>
<tr>
<td>Rancho La Puerta</td>
<td>Tecate</td>
<td>Río Tecate</td>
</tr>
<tr>
<td>Albercas Tanamá</td>
<td>Tecate</td>
<td>El Florido</td>
</tr>
<tr>
<td>Hacienda Santa Verónica</td>
<td>Tecate</td>
<td>Arroyo Seco</td>
</tr>
<tr>
<td>Rancho Los Lagos</td>
<td>Tecate</td>
<td>Arroyo Seco</td>
</tr>
<tr>
<td>Rancho San Lorenzo</td>
<td>Tecate</td>
<td>Arroyo Seco</td>
</tr>
<tr>
<td>Rancho Tecate</td>
<td>Tecate</td>
<td>El Florido</td>
</tr>
<tr>
<td>Albercas Joe Bill</td>
<td>Tecate</td>
<td>Río Tecate</td>
</tr>
<tr>
<td>Rancho Los Olivos</td>
<td>Tecate</td>
<td>El Florido</td>
</tr>
<tr>
<td>Rancho Ojai</td>
<td>Tecate</td>
<td>Río Tecate</td>
</tr>
<tr>
<td>Cañadas del Sol</td>
<td>Tecate</td>
<td>Río Seco</td>
</tr>
<tr>
<td>Hacienda Santa Dominga</td>
<td>Tecate</td>
<td>Río Seco</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia.
La principal forma de abastecimiento de agua de los establecimientos mostrados en el **CUADRO 51** es el agua subterránea mediante pozos o norias, por lo tanto, éstos se ubican próximos a los cauces de ríos y arroyos para aprovechar la disponibilidad de los recursos hídricos. Por lo general, es en la temporada de verano, cuando existe una mayor afluencia de personas en estos establecimientos, cuando las autoridades sanitarias del gobierno del estado (Dirección Contra Riesgos Sanitarios de la Secretaría de Salud) realiza muestreos sobre la calidad del agua para prevenir enfermedades asociadas a las altas temperaturas así como la capacitación sobre el buen manejo del agua a los encargados de su operación, tal es el caso de la amiba de la vida libre, la cual puede provocar meningoencefalitis. En fechas recientes no se han detectado ningún caso de amiba libre en la CRT.
A lo largo de los años en la Cuenca del Río Tijuana (CRT), el crecimiento del número de residentes ha modificado el uso del suelo de manera que cada año se extienden más los asentamientos humanos reduciendo la superficie rural. A diferencia de otras zonas, en la CRT el crecimiento de la población ha sido rápido, de manera que ahora contiene la mayor proporción del área de la quinta ciudad del país por tamaño de población, Tijuana, además de Tecate, y una pequeña porción del sur de la ciudad de San Diego. En este apartado nos centraremos en el crecimiento urbano del lado mexicano de la CRT.

En términos históricos, el gran crecimiento de las ciudades Tijuana y Tecate es singular por ser reciente, por su rapidez absoluta y relativa comparada con el resto del país, y porque su territorio es débil en recursos naturales que han mostrado ser propicios para la formación y crecimiento de ciudades en otras latitudes, en particular, fuentes de agua dulce y de energía. Este crecimiento tiene la singularidad de expresar de manera directa las fuerzas del capitalismo moderno que la fomentaron por no tener las restricciones de una historia urbana anterior, la colonial. La localización, el tamaño y las funciones de esas ciudades son producto de las fuerzas económicas e institucionales, binacionales desde un inicio, que influyeron poco la urbanización del resto del país.

En la época del cambio del siglo XIX al siguiente, ambos lados de la frontera internacional era una zona casi sin población, siendo el pequeño San Diego el único poblado cercano. Al principio del siglo XX esta zona tenía muy poca población, cuya mayoría se encontraba en pequeñas localidades dispersas. Los intentos del gobierno federal en la segunda parte del siglo XIX para poblar este territorio habían fracasado.

En el siglo XX el crecimiento urbano en la región se concentró en las zonas al lado de la línea internacional. Esta es una tendencia secular que se ha intensificado recientemente. En 1921 alrededor de la tercera parte de la población de Baja California residía en sus ciudades fronterizas; al final de la primera década del siglo XXI esa concentración aumentó a cerca del 80%, teniendo Tijuana la mitad el total estatal.
Desarrollo urbano

Hubo factores coyunturales que impulsaron el crecimiento urbano de esta frontera, como la conducción del agua del Río Colorado hacia el oeste de su lecho en la primera década del siglo XX, la revolución social en la segunda década de ese siglo, pues muchas personas se refugiaron en la frontera huyendo de la guerra, y el Programa de Braceros entre 1942 y la mitad de la década de los 1960’as. Estos factores, sin embargo, no explican las casi permanentes mayores tasas de crecimiento demográfico respecto al nacional a lo largo de los últimos 100 años.

En la explicación del gran crecimiento urbano de la frontera se deben considerar por separado a las fuerzas que impulsan el crecimiento y a los medios o procesos a través de los cuales esos impulsos se materializan.

Los procesos que han hecho crecer esas ciudades son de dos tipos, los transnacionales y los transfronterizos, que se materializan como actividades económicas y demográficas cuyo ámbito geográfico atraviesa la frontera y por ello son binacionales. Estos procesos impulsan el crecimiento urbano en términos económicos al inyectar inversión y dinero a las ciudades, y demográficos al generar empleos que retienen a los residentes.

Los procesos de naturaleza transnacional incluyen actividades cuyos orígenes y destinos no son fronterizos. Las dos actividades más importantes de este tipo son la migración y el comercio internacionales. Las ciudades fronterizas son el puente internacional para estas actividades, recibiendo de ellas efectos multiplicadores en empleo y consumo. Este tipo de actividades fue muy importante para las ciudades fronterizas en las primeras décadas del siglo pasado, decayendo su importancia relativa en décadas recientes.

Los procesos de naturaleza transfronteriza incluyen actividades cuyos orígenes o destinos son fronterizos. Algunas actividades de este tipo fueron importantes desde el inicio de la urbanización fronteriza, pero han sido cada vez más importantes, y han aparecido nuevas, a medida que la frontera se hacía menos permeable a la interacción y que las economías de ambos países se hacían más diferentes. Los procesos transfronterizos más importantes para el crecimiento urbano son tres: la inversión manufacturera, el empleo transfronterizo, y las ventas de bienes y servicios de consumo final.

Los procesos binacionales -transnacionales y transfronterizos- son producto del efecto combinado de tres condiciones históricamente determinadas: las diferencias estructurales de las economías de México y Estados Unidos, la adyacencia espacial en la frontera de esas diferencias, y la selectividad del flujo transfronterizo. De no haber diferencias estructurales, los intercambios entre ambos lados de la frontera serían menores y similares a los que ocurren dentro de un país entre dos ciudades que tienen un patrón espacial de lugar central, o parecidos a aquellos entre ambos lados de la frontera de países de similar desarrollo como en Sudamérica; la adyacencia geográfica de esas diferencias permite que los flujos, que decaen con la distancia, sean intensos en la frontera; y sin selectividad del flujo transfronterizo, no habría razón para que por ejemplo se permita el flujo hacia el norte de mercancías pero no de personas.
Diferencias estructurales

Los procesos binacionales son producto de la adyacencia geográfica de las diferencias estructurales de las formaciones económico-sociales de México y Estados Unidos, pero además son el medio y mediación de los impulsos o estímulos al crecimiento urbano que generan tales diferencias.

Las diferencias estructurales se plasman en disímiles niveles entre ambos países en la capacidad de acumulación de capital, el producto nacional per cápita, el nivel de los salarios, la distribución social del ingreso, la estructura de precios relativos, y las tasas de desempleo. Los diferenciales en estas variables son estímulos que generan un gran potencial de interacción entre ambos países en términos de flujos de capital, trabajadores y mercancías. Por ejemplo, la inversión se dirige a México buscando menores salarios y abundante mano de obra, y la migración se dirige hacia el norte en busca de empleo y mejores salarios. Las diferencias estructurales son el motor impulsor de los procesos transnacionales y transfronterizos.

Esas diferencias estructurales crean un potencial de interacción entre ambos países presente en cada porción del territorio nacional incluso en la frontera. La interacción tiene costos de transporte los cuales disminuyen con la distancia entre origen y destino. La adyacencia de las diferencias en la frontera permite que el potencial de interacción entre ambos países se solucione con los menores costos de transporte generando así una gran interacción sobre todo en los procesos transfronterizos. A través de los procesos transnacionales y transfronterizos las ciudades localizadas en el borde internacional de Baja California obtienen su impulso al crecimiento de esa adyacencia de las diferencias estructurales; el resto de ciudades también, pero en menor intensidad.

Las diferencias económicas son las razones que más explican los flujos transfronterizos de personas, capital y bienes. Las diferencias económicas entre México y Estados Unidos son grandes y han crecido desde hace varias décadas; se puede notar estas diferencias utilizando como indicador al producto interno bruto per cápita (PIBp). En 1960 el PIBp de México fue de 6,324 dólares (a precios del 2005) y el de Estados Unidos fue 11,060 dólares mayor; en el 2010 esa diferencia creció a 34,436 dólares (el PIBp mexicano ese año fue 14,852 dólares). Las tendencias indican que en el futuro cercano las diferencias entre ambos países serán levemente mayores, por ello las ciudades fronterizas seguirán creciendo pero a un ritmo menor (ver GRÁFICA 10).
Las diferencias estructurales entre ambos países -que impulsan el crecimiento urbano fronterizo- han dependido de las variaciones estructurales (mediano plazo) y variaciones macroeconómicas (corto plazo) en cada uno de los dos países. Estos variaciones han sido relativamente independientes entre sí en el pasado; sin embargo recientemente hay una tendencia a una menor autonomía de México al haberse hecho más dependiente del ciclo económico de Estados Unidos a través de las remesas de sus emigrantes y de sus exportaciones que las ha concentrado en un país comprador, el vecino del norte. Por ejemplo, en 1990 el 69% de las exportaciones mexicanas fueron a Estados Unidos, creciendo a 89% en el 2004 (BIE-INEGI). A pesar de la creciente interacción entre ambos países, especialmente después de la firma del TLCAN, la divergencia de sus economías es notable en el tiempo.

Las variaciones en el ámbito nacional se materializan como un conjunto de procesos que surgen al reducirse el crecimiento económico del país, pero que paradójicamente lo impulsan en la frontera fomentando así su crecimiento urbano. Esto se observa con mayor claridad en momentos de crisis como la del 1994-95. La primera gran consecuencia de esta situación es un incremento de las diferencias estructurales entre ambos países, que se materializa como una mayor desigualdad entre sus PIBp, y un menor precio real de casi cualquier mercancía o servicio en México, como salario, renta del suelo o servicios a la producción. Esta situación se presenta también en la frontera mexicana porque es parte de la misma formación económica nacional, por lo que sus salarios y otros costos reales disminuirían constituyendo un enorme incentivo para intensificar los procesos transfronterizos, base del crecimiento urbano. Así, por ejemplo, cuando el salario real de Tijuana disminuye, habrá más residentes que buscarán trabajo en San Diego, y más inversionistas de Estados Unidos que abrirán una maquiladora en Tijuana o Tecate. La intensificación de estos procesos implicará un apreciable crecimiento económico para las ciudades fronterizas mexicanas.
La segunda gran consecuencia de una situación de recesión económica en México ha sido un mayor desempleo y menores salarios reales, particularmente en las regiones centrales donde se concentra la población del país. Ello promueve la emigración de trabajadores desde el centro del país hacia los dinámicos centros turísticos de playa y hacia las ciudades fronterizas, donde podrían encontrar empleo que a su vez fue promovido por la desaceleración económica del país. Estos migrantes establecidos constituyen el crecimiento demográfico de las ciudades fronterizas. El crecimiento económico y el demográfico son los componentes de la expansión urbanística de las ciudades, de manera que puede ocurrir que cuando el país se encuentra en recesión, Tijuana expande su área urbana.

Sin embargo, algunos procesos transfronterizos como la maquila, dependen también del ciclo económico de Estados Unidos, además de las diferencias estructurales entre ese país y México, por lo que la frontera puede experimentar reducción coyuntural de su crecimiento económico aún si las diferencias estructurales no se modificaran; este es el caso del efecto de la recesión de Estados Unidos entre 2007 y 2009 que ha producido un alto nivel de desempleo en la frontera de Baja California por la reducción de la actividad maquiladora.

A continuación se presenta con más detalle dos de estos procesos que son impulsos nacionales y binacionales al crecimiento urbano fronterizo.

Industria de exportación: Maquiladora e IMMEX

Se llama así a un conjunto diverso de actividades industriales orientadas a la exportación, realizadas generalmente por empresa extranjeras –estadounidenses en su mayoría-, y cuya acción principal es ensamblar productos de consumo final. Inicialmente este programa fue aplicado sólo en la frontera con la intención de atraer inversión extranjera para abatir el desempleo generado por el retorno de trabajadores al finalizar el Programa de Braceros, a mediados de los 1960’as. Este régimen legal ha tenido continuas modificaciones desde entonces, entre ellas la de permitir el establecimiento de empresas maquiladoras fuera de la frontera. El último cambio ocurrió en noviembre del 2006, con la emisión de un nuevo régimen denominado “Industria manufacturera, maquiladora y de servicios de exportación” (IMMEX), que agrupó a las maquiladoras y a las empresas sujetas al programa de “Importación temporal para producir artículos de exportación” (PITEX). Lo que se ha mantenido desde el inicio es que las empresas inscritas en México bajo el régimen de maquila no pagan impuestos a la venta de lo que exportan, ni aranceles por los insumos importados, ni por sus exportaciones.

La industria manufacturera de exportación creció significativamente desde sus inicios, convirtiéndose en un segmento importante de las actividades económicas de la frontera de Baja California, y recientemente del país, y aunque existen empresas exportadoras en muchas partes del país, esta actividad persiste como un fenómeno principalmente fronterizo. A pesar de las crisis del 1993-1994 y del 2009, el empleo exportador de Tijuana creció en
6.8% anual promedio entre 1990 y 2012, por arriba de la tasa de crecimiento de la población. La participación del empleo exportador dentro de la población económicamente activa (PEA) de Tijuana ha sido preponderante desde hace unas tres décadas, pero ha variado con las fluctuaciones de los factores de oferta y demanda; después de la crisis económica de la década pasada, en el 2010 esa participación fue del 23%.

La industria maquiladora, aunque fue posibilitada por la complementariedad de los regímenes arancelarios de México y Estados Unidos, su surgimiento ha sido interpretado como producto de la aparición de una nueva división internacional del trabajo en el mundo después del gran crecimiento el comercio internacional que siguió a la Segunda Guerra Mundial, y a escala binacional su crecimiento se explica a partir de las variaciones de las condiciones de demanda y de oferta localizadas de los productos maquilados.

Por el lado de la demanda, las exportaciones dependen del ciclo económico de Estados Unidos (Gruben, 2001). Estando orientada a producir bienes de consumo final para la exportación, los cambios de la producción dependen de su mercado, es decir, de la capacidad de compra de los consumidores estadounidenses, lo cual está asociado a su propio ciclo económico. Si la economía de Estados Unidos está en auge, la exportación crece, y decrece si entra en recesión (ver GRÁFICAS 11 Y 12). La explicación de las variaciones de la actividad exportadora con el factor demanda ha llegado a ser prevaleciente, obscureciendo otras causas por ejemplo a las del lado de la oferta.

GRÁFICA 11 Determinantes del crecimiento de la industria de exportación (Maquila e IMMEX) 1990-2012 (Demanda)

Por el lado de la oferta, el crecimiento de la exportación se debe al incremento de las diferencias de costos entre Estados Unidos y México. Cerca de la mitad de los costos en la industria de exportación son los salarios, pero también consume localmente servicios de diverso tipo, como alquiler de la planta, gestión frente a los requerimientos gubernamentales, transporte de los trabajadores, limpieza, seguridad, etc. Además algunas empresas compran algunos insumos localmente. Cada vez que se agranda la brecha en el crecimiento económico de ambos países los costos en México se hacen relativamente menores, incrementando el incentivo para la inversión maquiladora (ver GRÁFICA 12). Adicionalmente, los costos laborales relativos en México, e igualmente en Tijuana, se han reducido también porque la regresiva distribución del ingreso -que la sociedad asumió- se ha profundizado en décadas recientes (Legovini et al. 2005); aunque en ambos países la porción del ingreso nacional que obtienen los pobres es ahora más bajo que antes, en México es aún menor, expresando la tendencia a la reducción del salario real.

La industria de exportación es importante para el crecimiento de las ciudades fronterizas por sus efectos directos sobre el empleo y los impuestos que genera, pero también por sus efectos indirectos e inducidos. INDIRECTAMENTE la industria exportadora genera empleos en los sectores servicios y manufactura en cada ciudad por los insumos nacionales que requiere. Por su parte, los efectos inducidos en el empleo local se producen por las compras para consumo final que hacen los trabajadores del sector exportador y aquellos generados indirectamente en los servicios y la manufactura. Hace unos años se estimó en el caso de Tijuana, por ejemplo, que por cada trabajador en la actividad exportadora se genera un trabajador adicional en otros sectores locales (Alegría 1995).
Empleo transfronterizo

El proceso binacional que en segundo lugar impulsa el crecimiento urbano en la frontera ha sido denominado transmigración, y consiste de personas residentes en el lado sur de la frontera que cotidianamente cruzan hacia el lado norte para ir a trabajar. Este proceso está atado a la localización fronteriza de residencias y empleos y es estimulado por las diferencias de salarios.

El impulso al crecimiento urbano de la trasmigración proviene de tres fuentes: i) constituye un flujo de dinero hacia Tijuana y Tecate no producido localmente; ii) al tener su empleo en las ciudades vecinas de Estados Unidos, disminuyen el desempleo local en el lado mexicano de la frontera, permitiendo que el salario local no disminuya; iii) al residir en el lado mexicano, ellos y sus familias realizan gran parte de su consumo final en el lugar de residencia, generando empleos indirectos localmente.

Con datos del 2010, en general, en Tijuana los transmigrantes son en su mayoría hombres (71%), adultos de mediana edad (40 años promedio), con relativa alta escolaridad (49% estudió al menos preparatoria, comparado con el 35% del resto de la población) y reciben ingresos alrededor del salario mínimo del lugar de empleo (Vargas y Coubès, 2017); sin embargo, el salario promedio mensual incluye personas que trabajaron menos de 5 días a la semana, por lo que el salario promedio por hora debe ser mayor que el salario mínimo (Alegria 2002).

La participación de los transmigrantes entre la población trabajadora de Tijuana ha tenido oscilaciones relacionadas con el ciclo económico de ambos lados de la frontera. Registrados con una encuesta (Eneu), su participación creció durante los años 1990’as hasta alcanzar el 8% de la PEA; a partir del inicio de este siglo se presenta una reducción de su participación, aún cuando crece el número total de estos trabajadores según datos censales (ver cuadro 52).

CUADRO 52 Trabajadores transmigrantes de Tijuana, e Ingreso promedio mensual (pesos) de las personas de acuerdo con el lugar donde trabajan de los residentes de municipios de la frontera norte de México

<table>
<thead>
<tr>
<th>Año</th>
<th>Transmigrantes de Tijuana</th>
<th>Ingreso en la frontera</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Número</td>
<td>% de la ciudad</td>
</tr>
<tr>
<td>2000</td>
<td>26,686</td>
<td>5.4</td>
</tr>
<tr>
<td>2010</td>
<td>29,303</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Aunque la proporción de transmigrantes no es muy alta en cada una de las ciudades fronterizas, su importancia para la economía local es mucho mayor debido a que esos trabajadores reciben en promedio un salario mucho mayor que los locales, y su consumo genera efectos multiplicadores en los sectores comercio y servicios. Por ejemplo, en 2000 el ingreso de los transmigrantes en promedio fue 2.2 veces mayor que el del resto de trabajadores locales, y en 2010 fue 2.6. Por ello el 4.5% de la población trabajadora de Tijuana que laboraba en San Diego acumulaban alrededor del 12% de la masa salarial de los residentes de Tijuana (considerando el promedio fronterizo de ingreso). Con ello, la
transmigración significa empleo directo para los residentes locales y por su consumo crea un efecto multiplicador en el sector terciario de la economía de la ciudad, constituyéndose así en un fuerte impulso al crecimiento urbano.

No todos los transmigrantes están permitidos legalmente a trabajar en Estados Unidos; por ejemplo, en 1998, en Tijuana entre los mexicanos no documentados en San Diego la mayoría eran aquellos que ingresaban a Estados Unidos con visa de visita (43%) y el resto ingresaba sin documento propio (10%); los trabajadores documentados fueron 47% incluyendo a los ciudadanos estadounidenses (14%) y a mexicanos con permiso de trabajo (33%) (Alegría 2002). Dado este antecedente, la reducción de su participación en el empleo local, registrado por los censos recientes, se debe probablemente a la reducción del número de transmigrantes sin permiso de trabajo producto del creciente control en los cruces fronterizos por parte de los agentes migratorios de Estados Unidos.

Este proceso se explica por las crecientes diferencias estructurales entre México y Estados Unidos, que en esta frontera son adyacentes y se materializan como diferencias en salarios. Por ejemplo, en 1988 el salario hora hombre promedio en la manufactura en San Diego era 9.3 dólares mayor que en Tijuana; esa diferencia aumentó a 10.4 dólares en 1998 (ENEU- INEGI; CPS-Bureau of Labor Statistics).

Los impulsos que los trabajadores de Tijuana o Tecate tienen para buscar empleo cruzando la frontera surgen cuando cualquiera de esas personas verifica que los salarios locales mexicanos pierden su poder de compra en ambos lados de la frontera. Un cambio macroeconómico negativo crea una situación en la cual a lo largo de la frontera (aún en el día siguiente al cambio negativo) el mismo monto de salario mexicano tiene menor poder de compra localmente (producto de la inflación) y en la ciudad vecina de Estados Unidos (producto de la devaluación del peso). Por la misma cantidad de tiempo trabajada se recibe menos salario real. Por ejemplo, por cada 1% de incremento de la diferencia de salarios entre Tijuana y San Diego, los transmigrantes se incrementaban en 3 %, en no más de 3 meses desde el cambio salarial (Alegría 2002).

El crecimiento económico producido por la transmigración, la industria de exportación y otros procesos transfronterizos proveen de empleos a los inmigrantes provenientes del resto del país, incluso del extranjero, permitiendo bajos niveles de desempleo en las ciudades de la frontera de Baja California y con ello un crecimiento urbano socialmente aceptado. Sin embargo, en esta historia asoma con fuerza su lado negativo. El insustituto crecimiento del desempleo que llegó al 7.9% en Tijuana en el 2009, por ejemplo, es expresión de la creciente dependencia de la economía del país y de la frontera frente a Estados Unidos. Supeditar cada vez más el crecimiento local a la inversión y comercio exterior hace a las ciudades fronterizas más débiles y sujetas a los vaivenes de la buena fortuna de los vecinos del norte, a pesar de la creciente obstrucción de la porosidad de la frontera.
Crecimiento urbano

Las ciudades localizadas en la Cuenca del Río Tijuana han crecido rápido desde hace décadas, casi siempre por arriba de sus respectivos promedios nacionales, crecimiento alimentado principalmente por la inmigración nacional y en menor medida internacional.

Al inicio del siglo XX las dos ciudades del lado mexicano de la frontera eran localidades pequeña (Tijuana tenía menos de 250 habitantes) y San Diego era un pueblo con menos de 15 mil residentes. Actualmente esas dos ciudades son urbes con millones de habitantes y con una gran importancia en la jerarquía urbana nacional respectiva (Alegría 2016).

El ritmo de este gran crecimiento de población ha oscilado en el tiempo lo cual ha dependido de variantes condiciones económicas. San Diego ha seguido el ritmo de su estado y país, California y Estados Unidos, mientras que Tijuana y Tecate principalmente de las diferencias económicas entre México y el país del norte.

Considerando la escala municipal, en las últimas décadas se observa que entre ambos lados de la frontera hay diferencias en el ritmo de crecimiento poblacional. San Diego ha tenido un ritmo parecido desde 1990, con una ligera reducción en la primera década de este milenio. En contraste, Tijuana y Tecate presentan una tendencia a la reducción y convergencia en sus tasas de crecimiento, pasando el primero de 4.8 al 2% desde la década de los años 1990 al quinquenio después del 2010, y Tecate del 4.1 al 1.9% (ver CUADRO 53).

CUADRO 53 Población y tasa anual de crecimiento municipal

<table>
<thead>
<tr>
<th>Municipio</th>
<th>Habitantes</th>
<th>Tasa anual (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Diego</td>
<td>2,498,016</td>
<td>2,813,833</td>
</tr>
<tr>
<td>Tijuana</td>
<td>747,381</td>
<td>1,210,820</td>
</tr>
<tr>
<td>Tecate</td>
<td>51,557</td>
<td>77,795</td>
</tr>
</tbody>
</table>

El territorio de la Cuenca del Río Tijuana se extiende mayoritariamente sobre los municipios del lado mexicano de la frontera, por ello la población de la Cuenca incluye principalmente residentes de las localidades urbanas de Tijuana y Tecate, siendo localidad urbana aquella que contiene más de 2,500 residentes. De toda la población de la Cuenca, Tijuana tiene el 88%, y 6% cada uno los otros dos municipios.

La población urbana de la Cuenca en los dos municipios mexicanos ha crecido con ritmos algo similares; entre 1990 y 2015 en Tijuana esa población creció 116% y en Tecate 136%. De manera diferente, en ese mismo cuarto de siglo la población en la Cuenca en San Diego sólo se incrementó 39%. En ese mismo periodo, la población de toda la Cuenca creció 110% (ver CUADRO 54).
CUADRO 54 Población urbana de la Cuenca del Río Tijuana por municipio

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>San Diego</td>
<td>73,168</td>
<td>76,081</td>
<td>92,523</td>
<td>102,051</td>
<td>6.0</td>
<td>1.39</td>
</tr>
<tr>
<td>Tijuana</td>
<td>671,251</td>
<td>1,100,780</td>
<td>1,397,080</td>
<td>1,446,941</td>
<td>88.0</td>
<td>2.18</td>
</tr>
<tr>
<td>Tecate (*)</td>
<td>40,240</td>
<td>57,782</td>
<td>78,210</td>
<td>95,033</td>
<td>6.0</td>
<td>2.36</td>
</tr>
<tr>
<td>Total en la cuenca</td>
<td>784,659</td>
<td>1,234,643</td>
<td>1,567,813</td>
<td>1,644,025</td>
<td>100</td>
<td>2.10</td>
</tr>
</tbody>
</table>

(*) Incluye la ciudad de Tecate y el resto de localidades urbanas en el municipio.

Para ponderar la importancia de la población urbana sobre la Cuenca la comparamos con su contexto municipal. Dentro de los tres municipios que ocupa la Cuenca, sus ciudades centrales han concentrado la mayor parte de la población desde hace décadas. En el 2015, por ejemplo, la ciudad de Tijuana tenía 98% de su población municipal y San Diego 88%. En términos tendenciales estas dos ciudades centrales presentan un patrón diferente a la ciudad de Tecate. Desde 1990 San Diego ha tenido alrededor el 88% de su población municipal y Tijuana cerca del 98%; ello quiere decir que esas ciudades crecen a un ritmo similar al resto de sus municipios. En contraste, la importancia relativa en su municipio de la ciudad de Tecate ha tenido una tendencia decreciente, pasando del 78% de su población municipal al 62% entre 1990 y 2015; la zona donde más crece la población urbana es fuera de su ciudad central, en pequeños asentamientos esparcidos sobre la Cuenca; esta población no central pasó de cero a 24% de la población municipal en el último cuarto de siglo (ver CUADRO 55).

CUADRO 55 Porcentaje de población municipal

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>San Diego</td>
<td>Ciudad</td>
<td>86%</td>
<td>88%</td>
<td>89%</td>
<td>88%</td>
</tr>
<tr>
<td></td>
<td>Ciudad en cuenca</td>
<td>3%</td>
<td>3%</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>Tijuana</td>
<td>Ciudad</td>
<td>96%</td>
<td>99%</td>
<td>100%</td>
<td>98%</td>
</tr>
<tr>
<td></td>
<td>Ciudad en cuenca</td>
<td>90%</td>
<td>91%</td>
<td>90%</td>
<td>84%</td>
</tr>
<tr>
<td></td>
<td>Ciudad fuera de cuenca</td>
<td>6%</td>
<td>9%</td>
<td>10%</td>
<td>14%</td>
</tr>
<tr>
<td>Tecate</td>
<td>Ciudad</td>
<td>78%</td>
<td>67%</td>
<td>64%</td>
<td>62%</td>
</tr>
<tr>
<td></td>
<td>Zonas urbanas en cuenca (*)</td>
<td>78%</td>
<td>74%</td>
<td>77%</td>
<td>86%</td>
</tr>
</tbody>
</table>

(*) Incluye la ciudad de Tecate y el resto de localidades urbanas en municipio de Tecate.

Por su parte, la importancia relativa de la población urbana de Tijuana en la Cuenca, que se mantuvo estable entre 1990 y 2010, decreció hacia el 2015 debido al gran crecimiento que tuvo la ciudad sobre territorio fuera de la Cuenca el cual llegó a albergar al 14% de la población municipal en el 2015. En contraste, en el último cuarto de siglo el municipio de San Diego ha tenido de manera estable 3% de su población urbana en la Cuenca.

La Cuenca del Río Tijuana tiene 4,450 km², 72.8% sobre territorio mexicano y 27.2% sobre el estadounidense (Ojeda-Revah y Espejel-Carbajal 2008). Como consecuencia del desarrollo urbano, este territorio ha estado cambiando de manera continua el uso del suelo rural por uno que alberga actividades urbanas, pero aun a una escala no grande; en el último cuarto de siglo el suelo urbano pasó de ocupar el 4.9% del territorio de la Cuenca al 8.3%. Aunque la gran
mayoría del territorio es aún rural, el ritmo del cambio de uso del suelo se ha incrementado a lo largo del tiempo; en los años de la década de 1990 se cambiaban de uso rural a uso urbano 4.4 Km² cada año en promedio, en la década siguiente 6.4, y recientemente 8.9 Km² desde el año 2010 (ver MAPA 15).

Con esa información se pueden establecer escenarios de crecimiento, aunque discutibles por los pocos datos disponibles. En un escenario de crecimiento lineal del área urbanizada en la Cuenca, en el año 2050 el uso del suelo urbano ocuparía el 13% de su territorio; en un escenario exponencial ocuparía el 17%. El primer escenario supone continuar con el nivel de densidad poblacional promedio de los últimos 15 años, mientras el segundo supone una reducción de esa densidad urbana. Dadas las características del mercado inmobiliario actual, es probable que la densidad de población no disminuya en el futuro cercano, al menos en Tijuana, ciudad con la mayor ocupación urbana en la Cuenca (ver CUADRO 56).
CUADRO 56 Área urbana por zona (km²)

<table>
<thead>
<tr>
<th>Ciudad</th>
<th>Zona</th>
<th>Área (km²)</th>
<th>1990</th>
<th>2000</th>
<th>2010</th>
<th>2015</th>
<th>% 2015</th>
<th>Porcentaje de la cuenca</th>
<th>Km² promedio añadidos por año</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Diego</td>
<td>Ciudad en cuenca</td>
<td>26.3</td>
<td>27.9</td>
<td>49.0</td>
<td>54.4</td>
<td>14.7</td>
<td>0.6</td>
<td>1.2</td>
<td>0.2 2.1 1.1</td>
</tr>
<tr>
<td>Tijuana</td>
<td>Ciudad en cuenca</td>
<td>178.0</td>
<td>215.2</td>
<td>244.4</td>
<td>263.8</td>
<td>71.5</td>
<td>4.0</td>
<td>5.9</td>
<td>3.7 2.9 3.9</td>
</tr>
<tr>
<td>Tijuana</td>
<td>Ciudad fuera de cuenca</td>
<td>12.3</td>
<td>20.1</td>
<td>27.5</td>
<td>42.5</td>
<td>11.5</td>
<td>0.3</td>
<td>1.0</td>
<td>0.8 0.7 3.0</td>
</tr>
<tr>
<td>Tecate</td>
<td>Zonas urbanas en cuenca (*)</td>
<td>12.7</td>
<td>17.7</td>
<td>31.0</td>
<td>51.0</td>
<td>13.8</td>
<td>0.3</td>
<td>1.1</td>
<td>0.5 1.3 4.0</td>
</tr>
<tr>
<td></td>
<td>Total en cuenca</td>
<td>217.0</td>
<td>260.9</td>
<td>324.5</td>
<td>369.1</td>
<td>100</td>
<td>4.9</td>
<td>8.3</td>
<td>4.4 6.4 8.9</td>
</tr>
</tbody>
</table>

(*) Incluye la ciudad de Tecate y el resto de localidades del municipio de Tecate.

Fuente: INEGI, Censos de Población y Vivienda: varios años; Ojeda-Revah y Espejel-Carbajal 2008.

Tijuana ha tenido la mayor área del suelo urbano de la Cuenca en el último cuarto de siglo; en el 2015 ocupaba el 71.5%, pero su participación tiende a reducirse pues en el 1990 tenía 82%. San Diego ha incrementado levemente su participación, pero Tecate la ha más que duplicado pasando del 5.8% al 13.8% en el mismo periodo. Tecate con el crecimiento de pequeñas y dispersas localidades urbanas, y Tijuana con el ensanchamiento del área urbana de su ciudad central, son los vectores principales del cambio de uso del suelo de rural a urbano en la Cuenca del Río Tijuana.
2.5 USOS DE SUELO Y CAMBIO DE USO DE SUELO EN LA CUENCA DEL RÍO TIJUANA

Gabriela Muñoz Meléndez
Lina Ojeda Revah

El uso de suelo y la cobertura vegetal son fundamentales para alcanzar la sustentabilidad de los recursos hídricos (Twarakavi & Kaluarachchi, 2006; Jackson, et al., 2005) y el bienestar de los ecosistemas (Farley, et al., 2005). Cambios en el uso de suelo (agricultura, ganadería, urbanización, etc.) han sido asociados de manera directa con la fragmentación de los ecosistemas naturales y la pérdida de biodiversidad (Defries, et al. 2006; Soulé, et al. 2004; Bender, et al. 1998); y de manera indirecta con impactos a ecosistemas de arroyos (Nilsson, et al. 2003) y estuarios (Howarth, et al. 1991), mediante mecanismos de erosión y deposición de sedimentos.

En particular, se ha documentado que el cambio de uso de suelo afecta profundamente los procesos que tienen lugar en cuencas hidrológicas tales como evapotranspiración (ET), interceptación e infiltración, esto a su vez causa alteraciones en flujos de agua superficiales y subsuperficiales (Wang et al, 2014, Niraula et al, 2015); por ejemplo la disminución de la calidad (Schilling y Spooner, 2006) y cantidad de agua en los cuerpos receptores (Tong et al., 2012; Nie et al, 2011) incluidas las aguas subterráneas (Twarakavi y Kaluarachchi, 2006). Investigaciones más recientes reportan que cambios climáticos podrían exacerbar dichos impactos (Hu et al., 2015; Chen et al., 2015; He et al., 2012).

Los estudios sobre los cambios de uso de suelo y sus impactos en la Cuenca del Río Tijuana (CRT) se remontan a 1950 (Wright, 2005a), son numerosos, variados en su naturaleza y en la aplicación de marcos metodológicos, con diversos grados de profundidad y cubriendo múltiples periodos de tiempo. La mayoría de ellos se generaron a principios de las décadas de 1990’as, tratando de comprender los procesos de degradación ambiental en el área. De estos estudios, los tres compilados por Wakida y Riveles (1998) ofrecen un primer panorama del estado de la CRT hacia 1997. El primero versa sobre las condiciones socioeconómicas, analizando las demandas de infraestructura y agua en los municipios en México – Tecate y Tijuana- y el condado de San Diego en Estados Unido. El segundo estudio contiene un análisis de las instituciones binacionales con competencia en la CRT y el tercero es sobre la calidad del agua en puntos específicos de la CRT, ubicando los orígenes de su degradación en la descarga de aguas residuales del lado mexicano.

En 1998, el trabajo de Ojeda-Revah fue pionero en evaluar el grado de fragmentación de los ecosistemas nativos de la CRT, causados principalmente por el crecimiento urbano y las actividades agrícolas pero también por el
aumento de los pastizales. Este estudio se remontó a usos de suelo y cobertura vegetales comunes durante 1938 y cubrió cambios hasta 1994, echando mano de fotografía áreas, mapas y sistemas de información geográfica. La citada investigación reveló que el tipo de vegetación más afectado fue el matorral costero cuya cobertura en la CRT disminuyó de 37 % a 29 % y aumentó su fragmentación de 10 a 46 fragmentos en el periodo indicado, causado primordialmente por el crecimiento urbano. El segundo tipo de vegetación más afectado fue el ripario con una reducción de 10 a 7% y fragmentos de largas extensiones causadas en parte por sobrepastoreo. Por otro lado, el chaparral también sufrió fragmentación dado por desarrollo inmobiliario de turismo, en particular al este de la CRT del lado Mexicano. Finalmente, la extensión de praderas de alta montaña varió dependiendo de la cantidad de precipitación recibidas en el año estudiado; aunque en general se admitía una disminución y fragmentación causada primordialmente por pastoreo. Este trabajo ofrecía como estrategia de conservación, el control de deforestación primordialmente en pendientes de más de 30° y en zonas de amortiguamiento en los cauces de las corrientes de agua, así como el control del cruce de ganado. Con estas medidas, se estimaba que se podrían conservar entre 30 y 40% de la extensión del matorral costero y del bosque ripario; respectivamente.

En 2005 se publicó el Atlas de la Cuenca del Río Tijuana, producto de un esfuerzo binacional para desarrollar un Sistema de Información Geográfica (SIG) para la CRT. El documento sin duda fue un hito que formalizó información, homogenizó datos y proporcionó una visualización efectiva de la CRT y sus características, incluidas topografía, geología, geomorfología, tipos de suelo, temperatura, precipitación, hidrografía, y otras características sociales y ambientales relevantes (Sosu, 2005).

Para finales de la década del 2000, un estudio biohistórico sobre los cambios de usos de suelo en la CRT (Ojeda y Espejel, 2008), se remontó a estudiar el estado de algunos elementos desde 1930 y hasta 2000. Los resultados develaron que si bien el acelerado crecimiento poblacional se presentó a ambos lados de la frontera, en México el crecimiento estuvo fuertemente marcado por la migración interna, misma que no fue acompañada con la creación de infraestructura necesaria y dio paso a un patrón urbano más compacto al mismo tiempo que se incrementaron las zonas de riesgo a inundaciones, derrumbes y deslaves. El crecimiento en Estados Unidos, aunque también acelerado, se hizo a la par de una fuerte inversión en infraestructura y con un patrón urbano más disperso que derivó una gran interface urbana en una matriz de vegetación que naturalmente está sujeta a incendios (Ojeda y Espejel, 2008).

Por el mismo tiempo y relacionado al trabajo anterior, Ojeda et al. (2008) relacionaron las causas detrás del cambio de uso de suelo observados en el CRT, al programa de industrialización fronterizo que dio paso a un crecimiento acelerado de la industria maquiladora en el lado mexicano, lo que atrajo mano de obra y un factor adicional importante al crecimiento poblacional, y con ello un incremento de necesidades de residencia y servicios; esto a su vez empujó visibles cambios de uso de suelo. Los autores concluyeron que si bien es claro la necesidad de una planeación integrada para el manejo de una cuenca binacional donde se comparten recursos hídricos, en realidad
estas están determinadas por diferentes factores que impulsan cambios de uso de suelo particulares en cada Nación Estado. Y aunque en México la aplicación laxa de regulaciones había sido un factor importante de los cambios de uso de suelo, también se reportaba una reversión de los mismos, en tanto que en Estados Unidos los cambios eran permanentes. El estudio asimismo, muestra el aislamiento que se da entre las comunidades de matorral costero y chaparral de ambos lados de la frontera, provocado principalmente por el crecimiento urbano de Tijuana y Tecate y sobre la carretera que las une.

Hacia 2010 Biggs et al., realizaron un estudio para cartografiar las fracciones de cobertura vegetal, superficie impermeable y de usos del suelo en Tijuana usando técnicas de percepción remota, en particular el análisis de combinaciones espectrales múltiples, a fin probar cuan idóneo para la ciudad podría ser el modelo clásico de Wolman que describe el ciclo de erosión en zonas urbanas, y de donde podrían estimarse impactos a la Cuenca. Los autores encontraron que dicho modelo no describía fehacientemente las aportaciones de sedimentos generados por el proceso de acelerada urbanización acontecida en Tijuana; y que el modelo de Griffin y Ford (1980) para ciudades Latinoamericanas, se ajustaba mejor a lo observado. Se reportó también que en Tijuana (para los años de 1938, 1956, 1962, 1970, 1980, 1994, y 2002) se encontró una fracción persistente de suelo expuesto incluso en áreas que habían sido urbanizadas décadas atrás, y que solamente las superficies urbanizadas más antiguas tenían una alta cobertura de superficie impermeable; es más, que la exposición de la fracción de suelo podría generar grandes volúmenes de sedimentos por periodos más largos que los estimados con el modelo de Wolman. Por otro lado, observaciones in situ sugirieron que las principales fuentes de generación de sedimentos podrían ser las grietas y baches en los caminos sin pavimentar.

En 2012, Farley et al., investigaron el efecto de la implementación en 1992 de la Nueva Reforma Agraria en México sobre la propiedad y el uso de suelo en la parte mexicana de la CRT, dado que dicha reforma modificó el sistema de propiedad comunal de la tierra (ejido) establecido en el Art. 27 de la Constitución, permitiendo a los ejidatarios obtener certificados individuales de propiedad de tierra y con ellos los derechos legales para vender, rentar o subarrendar sus parcelas. Los autores utilizaron mapas para los años 1994 y 2005 a fin de medir cambios en la cobertura y uso de suelo; y realizaron 55 entrevistas estructuradas a ejidatarios. Demostraron que los cambios estuvieron dominados por un incremento del área urbana y pastizales a costa de una disminución del matorral costero, chaparral y en menor grado de la agricultura. De las entrevistas se observó que la mayoría de ejidos habían participado de alguna manera en la certificación y obtención de título de propiedad permitidas por la Nueva Reforma Agraria, provocando cambios importantes en las zonas urbanas, peri-urbanas y rurales de la CRT, sin embargo, dicho cambio parecía obedecer a tener seguridad de propiedad de la tierra más que a deseos de venderla.

En 2015, se reportó el estudio más reciente sobre cambios de uso de suelo y cobertura vegetal en la CRT, éste abarcó el periodo que va de 1990 a 2011 (Eaton-Gonzáles y Mellink, 2015). Dicho estudio consideró como área de estudio la CRT más un área buffer de 10 km alrededor de la misma, con la idea de tener un mejor entendimiento de los
procesos presentes y futuros dentro de la CRT. Los autores usaron mapas temáticos de fuentes binacionales y aplicaron el modelo de cambio de (uso de) suelo (LCM) que es un módulo del paquete computacional IDRISI-Selva; con el objeto de identificar, medir e interpretar cuatro procesos: deforestación, antropización, abandono y recuperación. Los resultados mostraron que los patrones de cambio de uso de suelo en la CRT de 1990 a 2011 difieren significativamente entre México y E.U. y son resultado de diferentes políticas de conservación y planeación. En la próxima sección se describirán en detalle tales cambios.

Cambios de usos de suelo en la Cuenca del Río Tijuana al 2011

El mapa de usos de suelo incluido en el Atlas de la Cuenca del Río Tijuana (Sosú, 2005) se elaboró con datos de 1995; mismos que no se habían actualizado sino hasta 2011 por Eaton-Gonzalez y Mellink (2015). En esta sección se resumen los resultados obtenidos en este último estudio para describir el estado más reciente de los cambios de uso de suelo; estos fueron obtenidos mediante la estandarización de clases de Uso de Suelo y Cobertura Vegetal (USCV), lo que produjo 10 categorías comunes entre México y E.U. y una particular para cada país, como se lista a continuación:

- Cuerpo de agua
- Urbano/Asentamiento urbano
- Sin Vegetación
- Bosque (incluye al de Pino y de Juniperus)
- Bosque de Encino
- Chaparral y Matorral (rosetófilo costero y desértico micrófilo)
- Pastizal inducido
- Agrícola
- Bosque de Galería
- Vegetación de Galería
- Bosque inducido (sólo para México)

Considerando las clases listadas arriba, se encontró que los mayores cambios en ambos países se dieron en las clases urbana, pastizal inducido, matorral, agrícola, sin vegetación y bosque. El estudio cubrió los cambios de uso de suelo al 2011 en 98% y 91% en México y Estados Unidos; respectivamente. Para México, las superficies sin vegetación y con bosque de encinos y matorral ripario cedieron 80% de la superficie que tenían al inicio del periodo del estudio. Para Estados Unidos las superficies sin vegetación, de bosque, con matorral y agrícola fueron las que disminuyeron de manera relevante. Los pastizales inducidos y superficies urbanas tuvieron las mayores ganancias en ambos países. En México, el pastizal se extendió 5,666 hectáreas (ha) y las zonas urbanas 24,218 ha; en Estados Unidos el pastizal inducido ganó 3,434 ha y la superficie urbana aumentó en 20,169 ha. En los dos países los pastizales inducidos
cedieron ante la expansión urbana, 3,970 ha en México y 4,927 ha en Estados Unidos. Las ganancias de superficie que tuvieron los pastizales inducidos fueron en perjuicio de los matorrales; pérdidas que se contabilizaron en 6,949 has en México y 6,994 ha en E.U.

Como puede observarse de los resultados anteriores, el área convertida a uso urbano fue similar en dimensiones en ambos países, esto es relevante dado que más del 60 % de la superficie de la CRT se encuentra en México; así este resultado revela que el cambio de uso de suelo para propósitos urbanos fue mayor en los Estados Unidos. En ambos casos el crecimiento de superficie urbana lo hizo en detrimento del matorral, áreas agrícolas, superficies sin vegetación y pastizales inducidos, y en el caso particular de Estados Unidos también a costa del bosque. El crecimiento urbano observado para el periodo de 1993 a 2011 fue similar al experimentado en el periodo comprendido entre 1971 y 1994, en el sentido que se concentró alrededor de zonas urbanas existentes y a lo largo de las principales autopistas, primordialmente al norte y noreste de la CRT.

La cubertura que sufrió los mayores cambios (tanto en pérdidas como en ganancias) en ambos países fue el matorral, en parte por ser la superficie dominante (>60%) del área de estudio. México exhibió la mayor merma neta, esta ascendió a 14,063 ha (de las cuales 6,949 ha se cedieron a los pastizales inducidos y 7,396 ha se volvieron urbanas), en tanto que en E.U la disminución fue de 2,363 ha. En México, las categorías que tuvieron las mayores pérdidas después del matorral fueron las áreas agrícolas y aquellas sin vegetación con 6,309 y 6,474 ha; respectivamente. En contraste, en Estados Unidos las mismas categorías no mostraron disminuciones similares, ahí 2,122 ha de agricultura y 1,399 ha de superficies sin vegetación se perdieron. De manera particular, en Estados Unidos se deterioraron 22,978 ha de bosques debido a la conversión a matorral (18,239 ha), y cambio a fracciones menores a Bosque de encinos (2,080 ha) y áreas urbanas (1,202 ha). En México, se perdieron 1,722 ha de bosque. Una nueva categoría emergió para México en el periodo estudiado, aquella de “Bosque inducido”, esta ganó superficie del matorral ripario, matorral, áreas agrícolas y pastizales inducidos (ver FIGURA 3).
FIGURA 3 Ganancias, pérdidas y cambio neto por categoría de uso de suelo y cobertura vegetal

Notas:
Las unidades están dadas en hectáreas
Las figuras de la izquierda representan ganancias y pérdidas entre 1993 y 2011 en México (el diagrama superior) y entre 1990 y 2011 en E.U. (la figura inferior).
Los diagramas a mano derecha despliegan los cambios netos en los mismos periodos y para cada país

De manera resumida; el matorral y el bosque mostraron los flujos de mayor decrecimiento (esto es pérdida de superficie ante otras categorías), mientras que las zonas urbanas y los pastizales inducidos fueron las categorías que ganaron terreno a costa de las demás superficies.

Marco regulatorio, programas y acciones relativas al manejo de la CRT

El manejo binacional de las aguas compartidas entre México y E.U. se remonta a 1889 cuando se creó la Comisión Internacional de Límites y Aguas entre México y los Estados Unidos (Cila), organismo que se ha regido por más de 125 años mediante tratados y convenciones; el instrumento vigente es el Tratado sobre Distribución de Aguas Internacionales entre México y los Estados Unidos de América o Tratado de Aguas Internacionales de 1944 que se ocupa de los recursos hídricos del Río Bravo desde Fort Quitam hasta el Golfo de México y las aguas del Río Colorado y del Río Tijuana; para este último. El Tratado establece que ambos países emitirán recomendaciones para la distribución equitativa de sus aguas, elaborarán proyectos y construirán las obras que se acuerden, repartiendo equitativamente los costos.
Cuán importante como ha podido ser el papel histórico que ha desarrollado la CILA en el manejo de las aguas internacionales, no es la única entidad gubernamental involucrada en la administración de la CRT. De hecho, hay múltiples actores, instituciones y marcos regulatorios, como de manera general se muestra en la FIGURA 4. Este esquema revela la compleja e intricada red de relaciones que pueden establecerse, escenario que se complica aún más si se considera que la toma de decisiones es contraria en ambos países, de vertical en México a más horizontal en Estados Unidos. En la FIGURA 4 se muestra el marco regulatorio nacional de cada país que tiene jurisdicción sobre la CRT. Por su parte la FIGURA 5 lista los documentos de planeación más relevantes de acuerdo a la perspectiva estadounidense.
FIGURA 4: Instituciones, actores relevantes y marcos regulatorios generales en el manejo de la Cuenca del Río Tijuana.

FIGURA 5 Marcos regulatorios de Estados Unidos y México que tienen jurisdicción sobre la Cuenca del Río Tijuana

Nacional:
Constitución: derechos de propiedad e individuales
Regulaciones:
- Ley federal del agua limpia
- Ley de las especies en riesgo de extinción
- Ley de la conservación
Financiamiento y programas
- Protección ambiental
- Desarrollo de la vivienda y urbana
- Protección de recursos naturales
- Asistencia técnica, colección de datos, estudios, capacitación
- Transportación
Tratados y Convenciones
- Recursos naturales

Estado:
- Provisiones constitucionales: Protección de recursos naturales, de los derechos de propiedad y del Ambiente
- Regulaciones que permiten y guían el control de uso de suelo
- Regulaciones que restringen el control del uso de suelo
- Financiamiento y programas

Municipio:
- Control de uso de tierra tradicional
- Desarrollo Inteligentes
- Regulaciones locales de protección ambiental y de los recursos naturales (Protección de inundaciones, erosión y control de sedimentos, protección de laderas, planeación de cuenca, etc.)

Nacional:
Constitución
Regulaciones
- Ley de agua
- Ley de Aserradero
- Ley General de protección del ambiente
Financiamiento
- Desarrollo

Estado:
- Provisiones constitucionales
- Regulaciones
- Programas de manejo territorial

Municipio:
- Plan de desarrollo
- Desarrollo
- Los programas de mejoramiento de población
- Programas
En Estados Unidos los esfuerzos por proteger y restaurar la CRT tienen una larga historia e incluyen acciones tales como manejo de sedimentos, conservación de suelo, restauración del hábitat. En estas labores se han involucrado agencias de planeación federales, locales, así como organizaciones no gubernamentales y otros actores clave mediante financiación de proyectos de planeación e implementación en Estados Unidos y México. Actividades recientes se enfocan en prevenir la contaminación, controlar sedimentos, mejorar la calidad del agua, controlar inundaciones, mejorar las oportunidades recreacionales, educar al público en general y difundir información sobre la Cuenca.

CUADRO S7 Documentos clave en la planeación del Valle del Río Tijuana

<table>
<thead>
<tr>
<th>Documento de planeación</th>
<th>Responsable</th>
<th>Año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan de Manejo de la Reserva del Estuario del Río Tijuana</td>
<td>Parques Estatales de California Administración Nacional Oceánica y Atmosférica Servicio de Pesca y Vida Silvestre de Estados Unidos</td>
<td>2010</td>
</tr>
<tr>
<td>Directivas del manejo específico. Parque Regional del Valle del Río Tijuana</td>
<td>Condado de San Diego</td>
<td>2007</td>
</tr>
<tr>
<td>Una visión binacional para la Cuenca del Río Tijuana</td>
<td>Consejo consultor binacional de Cuenca para el Río Tijuana</td>
<td>2005</td>
</tr>
<tr>
<td>Plan de uso de suelo del programa local costero</td>
<td>Ciudad de San Diego</td>
<td>1999</td>
</tr>
<tr>
<td>Plan de sub-área del programa de conservación múltiple de especies</td>
<td>Ciudad de San Diego</td>
<td>1997</td>
</tr>
<tr>
<td>Plan de control de calidad del agua para la Cuenca de San Diego</td>
<td>Ciudad de San Diego</td>
<td>1994</td>
</tr>
</tbody>
</table>

Fuente: TRVRT, 2012

Con todo, diversos grados de cooperación ha emergido ante los retos de compartir una cuenca hidrográfica, un primer ejemplo se hizo patente hacia 1965 cuando ante el creciente volumen de descargas de aguas residuales provenientes de Tijuana, la Ciudad de San Diego propuso y firmó un acuerdo para tratar partes de tales efluentes. Sin embargo, ese acuerdo tiene que esperar hasta la década de 1980′as y 1990′as cuando el financiamiento se materializa. El CUADRO 58 resume las actividades de protección y restauración –con costos asociados- en la CRT compartidas por México y Estados Unidos desde 1980 a 2014.

CUADRO S8 Actividades de restauración y protección en la Cuenca del Río Tijuana (1980 a 2014)

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Tipo de proyecto</th>
<th>División de costo aproximado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mejoras en el tratamiento de aguas residuales</td>
<td>Diseño y construcción de una planta de captación y tratamiento de aguas residuales</td>
<td>$ 600 M</td>
</tr>
<tr>
<td>Control de sedimentos</td>
<td>Diseño y construcción a nivel de cuenca, pavimentación de caminos y proyectos comunitarios</td>
<td>$ 18 M</td>
</tr>
<tr>
<td>Control de basura</td>
<td>Campañas de recolección de basura, recolección de llantas, financiamiento de estudios</td>
<td>$ 3 M</td>
</tr>
<tr>
<td>Control de inundación</td>
<td>Limpieza de canales, construcción y remoción de zanjas y canaletas</td>
<td>10 M</td>
</tr>
<tr>
<td>Restauración y protección del ecosistema</td>
<td>Restauración del hábitat, control de especies invasoras y adquisición de tierras</td>
<td>$ 33 M</td>
</tr>
</tbody>
</table>

En millones de dólares.
n.d. Información no disponible
En el ámbito estatal mexicano no se han implementado políticas de conservación (áreas protegidas) y aunque se han decretado Programas de Desarrollo Urbano (PDU) y de Ordenamiento Ecológico (OE) (POE, 1995), pocas veces se respetan. En 2004 y 2005 publicaron nuevos PDU y OE cuya visión complementaria considera la prevención de riesgos (POE, 2004, 2005).

Los Planes de Desarrollo Urbano de Tijuana y Tecate prohíben la construcción en lugares con riesgos, en áreas con pendientes pronunciadas (>35%) y en cauces naturales (Ayuntamiento de Tijuana, 2008 y 2010), sin embargo, no detalla medidas ni se respeta, y el de Tecate no se ha actualizado desde 2003 y solo propone restaurar al Río Tecate (Ayuntamiento de Tecate 2003). Ambos municipios, aunque tienen facultades para elaborar OET, a la fecha ninguno lo ha hecho y no aplican el estatal argumentando problemas de escala.

En la planeación territorial de México existe una disociación entre lo urbano y lo rural. Los Ordenamientos Ecológico Territoriales (OET) sólo se aplican fuera de los centros de población, mientras que éstos últimos, se regulan a través de los planes de desarrollo urbano (PDU) pero extendiéndose al área rural. De esta forma, la dicotomía urbano-ambiental produce distorsiones en la planeación territorial (Díaz y Ojeda, 2013). En la Crt, a pesar de tener la facultad, ninguno de los municipios ha elaborado un OET, dejando a los PDU delimitar las áreas de conservación. Asimismo, no existen mecanismos obligatorios de coordinación entre planes, porque en la práctica no se aplican los planes, por falta de capacidad, o ausencia de mecanismos institucionales o por intereses creados por los mercados de bienes raíces (Momm-Schult et al., 2013).

Por último, la única medida de conservación existente a escala municipal, se establece en el Reglamento de Medio Ambiente y Ecología del Municipio de Tecate, que en su Art. 176 prohíbe talar árboles de las especies Cupressus forbesii (Ciprés de Tecate), Quercus agrifolia (Encino amargo) y Quercus engelmannii (Roble o encino azul) (Ayuntamiento de Tecate, 2003a).

Recomendaciones:

A manera de recomendación general y citando a Ochoa y Ojeda (2017), desde una perspectiva de ecología del paisaje, dada la accidentada topografía, los procesos hidrológicos en drenajes naturales y en pendientes pronunciadas en la Crt en el lado Mexicano, son críticos para reducir los riesgos a los que está expuesta la población durante eventos meteorológicos extremos. De hecho, las pendientes mayores a 35% en la Ley de General de Asentamientos Humanos (SEDESOL, 1993) y los cursos de agua naturales en la Ley de Aguas Nacionales (SARH, 1992),
están especificados como no aptos para la construcción, por riesgo a derrumbes e inundaciones. Dada su naturaleza lineal, estos espacios podrían fungir como corredores que ayudaran a la conectividad y por lo tanto, a aumentar la capacidad de resiliencia de las zonas urbanas y del paisaje en el que se insertan.

A escala de la Zona Metropolitana de Tijuana-Tecate-Playas de Rosarito (ZMTTR), tan solo respetar esas leyes se podría conservar el 35.4% de la vegetación natural (una tercera parte del matorral costero y del chaparral y toda la vegetación riparia). Al añadir los lugares ecológicos sobresalientes y declararlos protegidos como la Región Prioritaria (CONABIO, 2012), el área a conservar aumentaría a 21.5% de la ZMTTR y 42.4% de la vegetación natural (poco más de un tercio del matorral costero y chaparral y todo el bosque de encino y la vegetación riparia). Esta medida a su vez ayudaría a reducir los riesgos a inundaciones, deslaves y derrumbes, así como a la conservación del recurso hídrico en la zona (Ochoa y Ojeda, 2017)

Por otro lado y como se ha hecho evidente en la revisión bibliográfica, el manejo de la CRT a nivel binacional es una necesidad y de interés común a ambos países, sin embargo, esto está determinado por diferentes factores que impulsan cambios de uso de suelo particulares en cada Nación Estado.

A la fecha no hay una coordinación efectiva entre Estados Unidos y México a nivel nacional o regional para el manejo de la CRT, perdiéndose así la oportunidad de alcanzar metas comunes, ahorrar recursos y reducir costos. Ante esto, Fernández (2005) aplicó la teoría de juegos en un modelo de aguas arriba-aguas abajo para investigar estrategias de cooperación o la falta de la misma en el manejo de la CRT a fin de internalizar las externalidades del deterioro de la calidad del agua (aguas abajo) debido a sedimentación (originado aguas arriba). Los resultados sugirieron que la mitigación binacional coordinada considera la transferencia de pagos (bajo la regla del costo compartido de Chander/Tulkens y el valor de Shapley) de Estados Unidos a México que es óptima para reducir costos, daños y cantidad de sedimentos. Es más que en este tipo de transacción México ganaría menos que Estados Unidos.

Debe reconocerse, sin embargo, que la cooperación en los diferentes niveles de gobierno, actores relevantes y mecanismos de gobernanza en la región fronteriza toma tintes titánicos si se considera el número de instituciones, regulaciones y actores involucrados, sin embargo, hay ejemplos exitosos de cooperación de los cuales se debe aprender y adecuar de manera robusta y a la vez flexible.
2.6 DESARROLLO DE SECTORES PRODUCTIVOS

Carlos A. de la Parra, Mayra Melgar y Alfonso Camberos

Sector Primario

Los principales cultivos que se realizan en la zona son de alfalfa verde, avena forrajera, chile verde, frijol, pastos, jitomate, tomate verde y trigo en grano. En ganadería se tiene carne en canal de bovino, porcino, ovino, caprino y de gallináceas. Además, huevo para plato, miel y cera en greña (ver CUADRO 59). Tijuana es el principal productor de huevo para plato, además tiene una importante participación en la producción de canal de porcino y en leche de bovino y Tecate en producción de leche de bovino.

CUADRO 59 Volumen de producción del sector primario 2011 en la Zona Metropolitana de Tijuana (toneladas)*

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Tecate</th>
<th>Tijuana</th>
<th>Total ZMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leche de bovino</td>
<td>52,644</td>
<td>67,176</td>
<td>163,668</td>
</tr>
<tr>
<td>Tomate rojo</td>
<td>240</td>
<td>80</td>
<td>162,300</td>
</tr>
<tr>
<td>Alfalfa verde</td>
<td>12,293</td>
<td>-</td>
<td>104,624</td>
</tr>
<tr>
<td>Avena forrajera</td>
<td>8,206</td>
<td>1,080</td>
<td>19,904</td>
</tr>
<tr>
<td>Chile verde</td>
<td>306</td>
<td>252</td>
<td>11,774</td>
</tr>
<tr>
<td>Pastos</td>
<td>841</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Tomate verde</td>
<td>255</td>
<td>40</td>
<td>7,613</td>
</tr>
<tr>
<td>Carne en canal de bovino</td>
<td>542</td>
<td>1,175</td>
<td>3,011</td>
</tr>
<tr>
<td>Trigo grano</td>
<td>26</td>
<td>-</td>
<td>3,146</td>
</tr>
<tr>
<td>Huevo para plato</td>
<td>797</td>
<td>1,175</td>
<td>3,003</td>
</tr>
<tr>
<td>Carne en canal de gallináceas</td>
<td>-</td>
<td>17</td>
<td>978</td>
</tr>
<tr>
<td>Carne en canal de porcino</td>
<td>108</td>
<td>239</td>
<td>528</td>
</tr>
<tr>
<td>Carne en canal de caprino</td>
<td>16</td>
<td>44</td>
<td>175</td>
</tr>
<tr>
<td>Carne en canal de ovino</td>
<td>29</td>
<td>33</td>
<td>134</td>
</tr>
<tr>
<td>Miel</td>
<td>-</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>Frijol</td>
<td>-</td>
<td>-</td>
<td>13</td>
</tr>
<tr>
<td>Carne en greña</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

* Incluye al Municipio de Playas de Rosarito.

Sector Secundario

La industria manufacturera es la actividad que genera un gran valor en la producción, representando el 50 %; después de ésta, las actividades relacionadas con agua y electricidad representan el 8.2 %, la construcción el 6.3 % y la minería el 0.1 %. La fuerte vinculación con el mercado estadounidense y asiático ha permitido una gran apertura comercial del estado, el valor de las exportaciones representa más del 100 % del Producto Interno Bruto (PIB) Estatal, lo que posiciona a Baja California como el segundo estado con mayor valor de sus ex-portaciones. Lo que
genera una oportunidad para seguir desarrollando e innovando en este sector, para participar activamente en la dinámica de la globalización y la competencia, por los flujos de inversión que se está dando no solo entre países, sino también entre regiones, lo que incentiva una competitividad permanente (ver CUADRO 60).

CUADRO 60 Valor de la producción del sector secundario (millones de pesos)

<table>
<thead>
<tr>
<th>Zona</th>
<th>Valor total de la producción</th>
<th>Actividades secundarias</th>
<th>Industrias manufactureras</th>
<th>Construcción</th>
<th>Energía eléctrica, agua y gas *</th>
<th>Minería</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baja California</td>
<td>283,533.40</td>
<td>377,130.10</td>
<td>274,095.90</td>
<td>34,924.50</td>
<td>67,650.00</td>
<td>459.70</td>
</tr>
<tr>
<td>Zona Metropolitana de Tijuana</td>
<td>170,234.50</td>
<td>291,388.20</td>
<td>224,984.50</td>
<td>28,612.40</td>
<td>37,380.70</td>
<td>410.70</td>
</tr>
<tr>
<td>Tijuana</td>
<td>136,546.90</td>
<td>84,586.40</td>
<td>71,712.90</td>
<td>9,941.10</td>
<td>2,900.10</td>
<td>32.40</td>
</tr>
<tr>
<td>Tecate</td>
<td>9,693.80</td>
<td>7,647.20</td>
<td>7,438.90</td>
<td>60.40</td>
<td>147.90</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Valor porcentual</th>
<th>Actividades secundarias</th>
<th>Industrias manufactureras</th>
<th>Construcción</th>
<th>Energía eléctrica, agua y gas *</th>
<th>Minería</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zona Metropolitana de Tijuana</td>
<td>64%</td>
<td>50%</td>
<td>6%</td>
<td>8%</td>
<td>0%</td>
</tr>
<tr>
<td>Tijuana</td>
<td>62%</td>
<td>53%</td>
<td>7%</td>
<td>2%</td>
<td>0%</td>
</tr>
<tr>
<td>Tecate</td>
<td>79%</td>
<td>77%</td>
<td>1%</td>
<td>2%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Los subsectores que presentaron un mayor crecimiento de 2009 a 2014 fueron la industria metálica con 372.9%, la fabricación de insumos textiles con 216.8% la industria química con 146.7%, fabricación de transportes con 94.2%. El crecimiento de estos subsectores se vincula mayormente con la demanda interna del estado.

Sector Terciario

En Tijuana el sector terciario representa 37%, destacando la actividad comercial con 13%, transportes y comunicaciones con 11% del valor total de la producción. Por último, Tecate representa la menor proporción, con 21%, destacando las actividades del comercio y del turismo con 7 y 6%, respectivamente (ver CUADRO 61). Las actividades del sector terciario que están vinculadas con la exportación, construcción y turismo decrecieron. La integración de los mercados de la ZMT y California, EE.UU. transcinde el intercambio de mercancías y trabajadores, de la misma forma que los bajacalifornianos de medianos ingresos cruzan a California a comprar bienes de mayor calidad; durante la crisis, californianos de bajos ingresos cruzan hacia la ZMT para abastecer sus despensas y acudir a servicios, impulsando con ello el incremento del comercio al por menor.
CUADRO 61 Valor de la producción del sector terciario (millones de pesos)

<table>
<thead>
<tr>
<th>Zona</th>
<th>Valor total de la producción</th>
<th>Valor total del sector terciario</th>
<th>Comercio</th>
<th>Actividades turísticas</th>
<th>Servicios financieros</th>
<th>Transportes y comunicación</th>
<th>Servicios educativos</th>
<th>Otros</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baja California</td>
<td>283,533.40</td>
<td>176,320.6</td>
<td>71,382.5</td>
<td>25,064.40</td>
<td>2,104.70</td>
<td>40,829.30</td>
<td>11,117.2</td>
<td>25,822.6</td>
</tr>
<tr>
<td>Zona Metropolitana Tijuana</td>
<td>170,234.50</td>
<td>152,208.3</td>
<td>60,198.8</td>
<td>21,984.50</td>
<td>1,863.70</td>
<td>37,242.10</td>
<td>9,482.1</td>
<td>21,437.1</td>
</tr>
<tr>
<td>Tecate</td>
<td>9,693.80</td>
<td>2,013.90</td>
<td>660.4</td>
<td>537.1</td>
<td>9.9</td>
<td>461.3</td>
<td>75.2</td>
<td>269.9</td>
</tr>
<tr>
<td>Tijuana</td>
<td>136,546.90</td>
<td>49,879.30</td>
<td>17,548.6</td>
<td>6,874.50</td>
<td>708.7</td>
<td>14,658.60</td>
<td>3,176.40</td>
<td>6,912.50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Participación porcentual</th>
<th>Baja California</th>
<th>Zona Metropolitana de Tijuana</th>
<th>Tijuana</th>
<th>Tecate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>31.09%</td>
<td>33.54%</td>
<td>36.53%</td>
<td>20.77%</td>
</tr>
<tr>
<td></td>
<td>12.59%</td>
<td>13.27%</td>
<td>12.85%</td>
<td>6.81%</td>
</tr>
<tr>
<td></td>
<td>4.42%</td>
<td>4.84%</td>
<td>5.03%</td>
<td>5.54%</td>
</tr>
<tr>
<td></td>
<td>0.37%</td>
<td>0.41%</td>
<td>0.52%</td>
<td>0.10%</td>
</tr>
<tr>
<td></td>
<td>7.20%</td>
<td>8.21%</td>
<td>10.74%</td>
<td>4.76%</td>
</tr>
<tr>
<td></td>
<td>1.96%</td>
<td>2.09%</td>
<td>2.33%</td>
<td>0.78%</td>
</tr>
<tr>
<td></td>
<td>4.55%</td>
<td>4.72%</td>
<td>5.06%</td>
<td>2.78%</td>
</tr>
<tr>
<td></td>
<td>31.09%</td>
<td>33.54%</td>
<td>36.53%</td>
<td>20.77%</td>
</tr>
</tbody>
</table>

Fuente: SIDUE, IMPLAN Playas de Rosarito, 2016. Programa de Ordenamiento de la Zona Metropolitana Tijuana-Tecate-Playas de Rosarito-Ensenada (POZMT), Mexicali, Baja California.

Por su parte, en la comparación entre los sectores de la actividad económica, resalta la importancia del municipio de Tijuana, que concentra las actividades de los sectores secundario, terciario y cuaternario, excepción del sector primario (ver GRÁFICA 13).
Aspectos Socioeconómicos

Empleo

La economía de ciudades como Tijuana están mucho más ligadas con San Diego que con el resto del país. La proximidad geográfica es uno de los elementos centrales que explican esta larga interrelación, misma que se remonta, al menos, a la época de la prohibición del alcohol en EE.UU., hacia finales de la década de 1920 (Vega, 2016).

De acuerdo con el Plan Maestro Fronterizo California-Baja California, en los municipios de Tijuana, Tecate y el condado de San Diego contaban en el 2010 con una población empleada de 2,147,113 personas, y se estima que para el 2020 asciendan a 4,377,274 (ver CUADRO 62). Tijuana encabeza la lista presentando una tasa de crecimiento promedio anual de 4.2%.

CUADRO 62 Población empleada en los municipios de la Cuenca del Río Tijuana (2010)

<table>
<thead>
<tr>
<th>Estado/Municipio/Condado</th>
<th>2010</th>
<th>2040</th>
<th>Cambio 2010-2040</th>
<th>Tasa de crecimiento promedio anual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baja California</td>
<td>1,390,148</td>
<td>4,606,354</td>
<td>3,216,206</td>
<td>4.1%</td>
</tr>
<tr>
<td>Tijuana</td>
<td>698,353</td>
<td>2,403,655</td>
<td>1,705,303</td>
<td>4.2%</td>
</tr>
<tr>
<td>Tecate</td>
<td>41,660</td>
<td>140,519</td>
<td>98,859</td>
<td>4.1%</td>
</tr>
<tr>
<td>California</td>
<td>16,051,500</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Condado de San Diego</td>
<td>1,407,100</td>
<td>1,833,100</td>
<td>426,000</td>
<td>0.9%</td>
</tr>
</tbody>
</table>

Fuente: California-Baja California Border Master Plan.

Con respecto a los trabajadores transfronterizos o commuters algunos estudios señalan que 29,303 personas residen en Tijuana y trabajan en EE.UU., en donde el 71.06% son del sexo masculino (Vega, 2016). Otras fuentes indican que, aunque es un dato difícil de medir, se estima que diariamente entre 50,000 y 70,000 personas cruzan la frontera para trabajar en EE.UU. (El Colef, 2015), y viceversa, existen también un número considerable de personas en el lado americano que se trasladan al lado mexicano para trabajar en posiciones de dirección en las plantas maquiladoras (Vega, 2016).

Producto Interno Bruto (PIB)

Existen varias asimetrías económicas entre San Diego y Tijuana-Tecate. Es importante considerar que San Diego se localiza en uno de los estados con una de las economías más fuertes, según datos revelados por el Banco Mundial indican que California sería la sexta economía más grande del mundo, si fuera una nación independiente. Estas asimetrías económicas significan que los recursos y prioridades de los gobiernos y de los ciudadanos de la CRT de México y los EE.UU. son a menudo muy diferentes (Ganster, 2010).

El PIB de los municipios de la CRT presenta cifras dadas las vocaciones de actividades económicas de cada lugar. Entre los sectores económicos más importantes en la parte estadunidense destacan: servicios financieros, manufactura, turismo, gobierno, etc.; en la parte mexicana: los clusters aeroespacial, software, electrónica, salud,
turismo, muebles, automotriz, logística y tecnologías de la información. Dependiendo en el tipo de cambio entre el dólar-peso, el PIB de San Diego en ocasiones es 15 veces mayor que el de Tijuana y los sueldos mínimos son hasta 10 veces más alto en los EE.UU. (SDSU-El Colef, 2005). En el 2010, el PIB en San Diego fue de 163,875 millones de dólares con un ingreso per cápita de 45,627 dólares. En la parte mexicana de la CRT Tijuana presentó un PIB mayor al de Tecate. Sin embargo, a nivel per cápita Tecate mostró mayor riqueza (81,708 dólares) (ver CUADRO 63 y CUADRO 64).

CUADRO 63 Producto Interno Bruto (millones de pesos-dólares) en los municipios de la Cuenca del Río Tijuana

<table>
<thead>
<tr>
<th>Estado/Municipio</th>
<th>2010</th>
<th>2040</th>
<th>Tasa de crecimiento promedio anual</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pesos</td>
<td>Dólares</td>
<td>Pesos</td>
</tr>
<tr>
<td>Baja California</td>
<td>241,835</td>
<td>19,148</td>
<td>397,625</td>
</tr>
<tr>
<td>Tijuana</td>
<td>116,466</td>
<td>9,221</td>
<td>191,492</td>
</tr>
<tr>
<td>Tecate</td>
<td>8,268</td>
<td>655</td>
<td>13,594</td>
</tr>
<tr>
<td>California</td>
<td>-</td>
<td>1,845,279</td>
<td>-</td>
</tr>
<tr>
<td>Condado de San Diego</td>
<td>-</td>
<td>163,875</td>
<td>-</td>
</tr>
</tbody>
</table>

Fuente: California-Baja California Border Master Plan.

CUADRO 64 Ingresos per cápita en los municipios de la Cuenca del Río Tijuana (2010)

<table>
<thead>
<tr>
<th>Estado-Municipio</th>
<th>2010 (MX)</th>
<th>2010 (USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baja California</td>
<td>76,565</td>
<td>6,062</td>
</tr>
<tr>
<td>Tijuana</td>
<td>74,593</td>
<td>5,906</td>
</tr>
<tr>
<td>Tecate</td>
<td>81,708</td>
<td>6,469</td>
</tr>
<tr>
<td>California</td>
<td>-</td>
<td>42,297</td>
</tr>
<tr>
<td>Condado de San Diego</td>
<td>-</td>
<td>45,627</td>
</tr>
</tbody>
</table>

Fuente: California-Baja California Border Master Plan.

Desarrollo forestal

Las especies con potencial de explotación forestal se dividen en especies maderables y especies no maderables. En Baja California dentro de las especies maderables se incluyen el pino, el encino y la manzanita, que se utilizan como combustibles. Con respecto a las especies no maderables se encuentran la jojoba y la palmilla, entre otras. En la parte mexicana de la cuenca el municipio de Tecate es el encargado de producir el 81% de la producción maderable. De las especies no maderables Tecate produjo 526 m3 de leña lo que significó el 70% de la producción estatal, sin embargo, Tijuana no presentó ningún reporte (INEGI, Censo Agrícola, 2007). Aunque la colecta de leña local en el estado es una actividad que tiende a disminuir debido a que la demanda es satisfecha con leña proveniente del Estado de Baja California Sur y Sonora (ver CUADRO 65).

CUADRO 65 Volumen de madera en los municipios de Baja California

<table>
<thead>
<tr>
<th>Estado/Municipio</th>
<th>Volumen de madera obtenido por especie (m³)</th>
<th>Total</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pino</td>
<td>Encino</td>
<td>Cedro</td>
</tr>
<tr>
<td>Baja California</td>
<td>20,976.20</td>
<td>25.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Ensenada</td>
<td>520.20</td>
<td>3.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Mexicali</td>
<td>2,375.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>13,581.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Tecate</td>
<td>4,500.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Tijuana</td>
<td>0.00</td>
<td>22.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

2.7 IMPACTOS A LA ATMÓSFERA

Carlos A. de la Parra, Mayra Melgar y Alfonso Camberos

Desde el 2004, la calidad del aire ha disminuido en forma drástica en el municipio de Tijuana. El origen de este problema se asocia principalmente a las actividades comerciales, la falta de cobertura vegetal, así como a la alta circulación vehicular tanto del transporte público como privado, siendo esta última señalada como la que más contribuye a la contaminación ambiental de esta frontera.

Calidad del aire en Tijuana y Tecate, B.C.

De acuerdo con el Cuarto Almanaque de Datos y Tendencias de la Calidad del Aire en 20 ciudades mexicanas (2000-2009), los municipios de Tijuana y Tecate cuentan con un inventario de emisiones del año 2005 (SEMARNAT, 2010), donde se destaca que los vehículos automotores contribuyen con casi la totalidad de las emisiones de CO (Monóxido de carbono) y NOx (Óxidos de nitrógeno) y son las principales fuentes de emisiones de COV (Compuestos orgánicos volátiles). De acuerdo con INEGI en el 2015, Tijuana registró 552,613 vehículos de motor en circulación y las cifras tienden a la subir, Tecate registró 43,011 vehículos. Con respecto a las fuentes de emisión predominantes de PM10 (Partículas en suspensión <10 micra) y SOx (Óxidos de azufre) son las fuentes de área (ver GRÁFICA 14 y 15).

GRÁFICA 14 Vehículos de motores registrados en el municipio de Tijuana y Tecate en la CRT, 1980-2015
Nota: Incluyen automóviles, camiones para pasajeros, camiones para carga y motocicletas.
Fuente: Elaboración propia con datos de INEGI.

De acuerdo con el análisis de la información reportada por la Red de Monitoreo Atmosférico-Tijuana sobre el periodo de 2000-2009, los principales problemas con la calidad del aire en la ciudad de Tijuana y Tecate se relacionan con altas concentraciones de PM10 y O3 (Ozono). Para el primer contaminante en Tijuana se observa una
distribución de oriente a poniente; las concentraciones más altas se presentan en La Mesa (LAM) y posteriormente en El Colegio de la Frontera (El COLEF); concentraciones un poco menores en el Instituto Tecnológico de Tijuana (ITT) y Centro de Salud (CENTRO); y las concentraciones más bajas en Playas (PLA), más del 80% de las emisiones provienen de las fuentes de área, y se sabe que cerca de la estación LAM existen algunas zonas de terracería, así como establecimientos de comercio y servicios. En Tecate, en el periodo de análisis destacan 13 días con valores que superan el valor normado del ozono y que se distribuyen en los mismos años en los que no se ha cumplido con la norma horaria. Aun cuando en los dos últimos años reportados no se tienen días con concentraciones por arriba del valor normado, no es posible determinar alguna tendencia.

Para el segundo contaminante, en Tijuana las PM10, se atenúan hacia el oriente y las más bajas se registran en los alrededores de la estación La Mesa (LAM) (ver MAPA 16 y CUADRO 66). En Tecate, existen problemas por falta de información, pero de acuerdo al almanaque de datos del periodo 2000 al 2004 no se ha cumplido la norma anual correspondiente a este contaminante (ver CUADRO 67).
CUADRO 66 Indicadores relacionados con el cumplimiento de las NOM-2008 de la ciudad de Tijuana

<table>
<thead>
<tr>
<th>Contaminante</th>
<th>Norma</th>
<th>Evaluación del cumplimiento de la NOM</th>
<th>Diagnóstico para Tijuana</th>
<th>No. de días en los que se rebase el valor de la norma</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM₁₀ᵇ</td>
<td>24 hrs</td>
<td>CENTRO, COLEF, ITT, LAM y PLA</td>
<td>--</td>
<td>D.I.</td>
</tr>
<tr>
<td></td>
<td>Anual</td>
<td></td>
<td>--</td>
<td>D.I.</td>
</tr>
<tr>
<td>O₃</td>
<td>1 hora</td>
<td>--</td>
<td>--</td>
<td>Se cumplió</td>
</tr>
<tr>
<td></td>
<td>Anual</td>
<td></td>
<td>LAM y PLA</td>
<td>D.I.</td>
</tr>
<tr>
<td>CO</td>
<td>8 hrs</td>
<td>--</td>
<td>--</td>
<td>Se cumplió</td>
</tr>
<tr>
<td>NO₂</td>
<td>1 hora</td>
<td>--</td>
<td>--</td>
<td>Se cumplió</td>
</tr>
<tr>
<td>SO₂</td>
<td>24 hrs</td>
<td>--</td>
<td>--</td>
<td>Se cumplió</td>
</tr>
<tr>
<td></td>
<td>Anual</td>
<td></td>
<td>--</td>
<td>Se cumplió</td>
</tr>
</tbody>
</table>

Notas: D.I. = no hay datos suficientes para determinar el cumplimiento de la NOM de acuerdo con los criterios establecidos en la norma.

a) La evaluación del cumplimiento de Tijuana se determina con el valor más alto de los valores del indicador (percentil 98, quinto máximo, promedio anual, etc.) que se obtuvieron para cada una de las estaciones de monitoreo.

b) El análisis de las PM₁₀ se realizó hasta 2009, pero se reporta 2008 para tener el mismo año de evaluación con respecto a los demás contaminantes. Para la evaluación del cumplimiento de las normas se utilizaron los datos provenientes de las mediciones manuales.

c) Muestreos de 24 horas. Se obtuvo a partir del muestreo máximo de los muestreos que se realizaron en cada uno de los días del año. En total, 23muestreos máximos en 2008.

Fuente: INE-DGICUR.
CUADRO 67 Indicadores relacionados con el cumplimiento de las NOM-2008 de la ciudad de Tecate

<table>
<thead>
<tr>
<th>Contaminante</th>
<th>Norma</th>
<th>Cumplimiento de la norma</th>
<th>No. de días en los que se rebasó el valor de la norma</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM$_{10}^a$</td>
<td>24 horas D.I.</td>
<td></td>
<td>4a</td>
</tr>
<tr>
<td></td>
<td>Anual</td>
<td>D.I</td>
<td></td>
</tr>
<tr>
<td>O$_3$</td>
<td>1 hora Se cumplió</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Anual</td>
<td>D.I</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>8 horas Se cumplió</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Anual</td>
<td>D.I</td>
<td></td>
</tr>
<tr>
<td>NO$_2$</td>
<td>1 hora Se cumplió</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Notas: D.I. = Datos insuficientes. No fue posible evaluar el cumplimiento de la NOM por falta de datos. a) La evaluación del cumplimiento de la norma se realizó con la información de los muestreos manuales. Si bien hay información de 2009, se reporta 2008 para referir el mismo año de evaluación con respecto a los demás contaminantes. b) Muestreos de 24 horas.

Fuente: INE-DGICUR.

Calidad del aire en San Diego, CA

Con lo que respecta a San Diego, este cuenta con una red de monitoreo para la calidad del aire de alrededor de 20 estaciones, en la cuenca se ubican la estación San Ysidro (SAY), Otay Mesa (OM), Chula Vista (CVA), Alpine (ALP) y la estación East County (GAP3) (ver MAPA 17). Con respecto al Ozono (O3) ha habido una disminución significativa en el promedio de 3 años de los días de excedencia y se ha registrado un fuerte descenso en su valor de 8 horas desde 1990. Al paso de los años los niveles de concentración de Dióxido de Nitrógeno (NO2) a nivel condado el promedio máximo anual ha ido decreciendo, de 0.26 para 1995 paso a 0.16 en el 2015. Las concentraciones de PM 2.5 FRM medias anuales han disminuido también (ver CUADRO 68).

MAPA 17 Ubicación de las estaciones de monitoreo, San Diego, 2015

CUADRO 68 Concentraciones de contaminantes en el condado de San Diego 2006-2015

Ozono (03)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.088</td>
<td>0.089</td>
<td>0.092</td>
<td>0.089</td>
<td>0.088</td>
<td>0.083</td>
<td>0.081</td>
<td>0.080</td>
<td>0.079</td>
<td>0.079</td>
</tr>
</tbody>
</table>

| Concentración máxima a 8 hrs (ppm) | 0.100 | 0.092 | 0.109 | 0.097 | 0.088 | 0.093 | 0.083 | 0.083 | 0.081 | 0.084 |

| Días por encima de la Norma Nacional a 8 hrs. | 38 | 27 | 35 | 24 | 14 | 10 | 10 | 7 | 12* | 13 |

* Incluye información modificada por incendios locales. Esos días se consideran “eventos excepcionales” por la AQ5.

Dióxido de Nitrógeno (NO2)

<table>
<thead>
<tr>
<th>Concentración máxima a 1 hr. (ppm)</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.097</td>
<td>0.101</td>
<td>0.091</td>
<td>0.078</td>
<td>0.081</td>
<td>0.067</td>
<td>0.065</td>
<td>0.081</td>
<td>0.075</td>
<td>0.062</td>
</tr>
</tbody>
</table>

| Promedio máximo anual (ppm) | 0.024 | 0.022 | 0.019 | 0.017 | 0.015 | 0.014 | 0.013 | 0.014 | 0.013 | 0.016 |

| Días por encima de la Norma Nacional a 1 hr. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

PM10

<table>
<thead>
<tr>
<th>Concentración Máxima a 24 hr. (mg/m³)</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>133</td>
<td>394</td>
<td>158</td>
<td>126</td>
<td>108</td>
<td>125</td>
<td>126</td>
<td>90</td>
<td>29</td>
<td>136</td>
</tr>
</tbody>
</table>

| Días por encima de la Norma Nacional | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

PM2.5

<table>
<thead>
<tr>
<th>Concentración Máxima a 24 hr. (mg/m³)</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>63.3</td>
<td>126.2</td>
<td>42.0</td>
<td>65.0</td>
<td>33.3</td>
<td>34.7</td>
<td>70.7</td>
<td>56.3</td>
<td>36.7</td>
<td>33.5</td>
</tr>
</tbody>
</table>

| Días por encima de la Norma Nacional | 1 | 17 | 3 | 3 | 0 | 2 | 2 | 1 | 0 | |

* Ocurrieron incendios forestales en el condado de San Diego.
Las actividades agrícolas están muy relacionadas con los aprovechamientos de los mantos acuíferos, al grado de ser una de las principales causas de la sobreexplotación de las reservas hídricas, o de intrusión salina. Si bien existen reducidas superficies agrícolas de riego, estas se ven amenazadas por la sequía que está atravesando la región, aunado a las prácticas poco adecuadas de protección contra la contaminación de cuerpos de agua, tanto superficiales como subterráneas.

Agricultura en Tijuana, B.C.

Tijuana se ha caracterizado por ser un municipio preponderantemente urbano, lo que ha contribuido a la inadecuada atención a las necesidades de los productores agropecuarios y al desarrollo de las zonas rurales en su conjunto. La disponibilidad de tierras cultivables es muy limitada, lo que hace que esta actividad sea poco significativa (IMPLAN, 2015). Las localidades de la Zona Agrícola de Tijuana son: Las Delicias, Hacienda los Venados, Antorcha Campesina, Terrazas de San Ángel, Terrazas del So, Santa Fe, Rancho de sus Niños, Las Glorias y Antorcha II. En el 2015, la superficie sembrada fue de 744.37 has (SEFOA, 2015) (ver CUADRO 69).
CUADRO 69 Superficie sembrada por cultivo, ciclo y modalidad en el municipio de Tijuana, 2015 (hectáreas)

<table>
<thead>
<tr>
<th>Cultivo</th>
<th>O-I Riego</th>
<th>P-V Riego</th>
<th>NN Riego</th>
<th>Temporal Riego</th>
<th>Temporal P-V</th>
<th>Temporal NN</th>
<th>Total</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceituna</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>127.33</td>
<td>43.46</td>
<td>170.79</td>
<td>22.94</td>
</tr>
<tr>
<td>Alfalfa</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.00</td>
<td>4.51</td>
<td>0.0</td>
<td>4.51</td>
<td>0.61</td>
</tr>
<tr>
<td>Avena forrajera</td>
<td>0.0</td>
<td>234.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>234.0</td>
<td>31.44</td>
</tr>
<tr>
<td>Betabel</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.13</td>
</tr>
<tr>
<td>Calabacita</td>
<td>4.0</td>
<td>0.0</td>
<td>0.45</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>4.45</td>
<td>0.60</td>
</tr>
<tr>
<td>Calabaza</td>
<td>0.0</td>
<td>0.0</td>
<td>9.12</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>9.12</td>
<td>1.22</td>
</tr>
<tr>
<td>Cebada forrajera</td>
<td>0.0</td>
<td>100.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
<td>13.43</td>
</tr>
<tr>
<td>Cebollín</td>
<td>1.00</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.13</td>
</tr>
<tr>
<td>Chile</td>
<td>0.0</td>
<td>0.0</td>
<td>1.02</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.02</td>
<td>0.14</td>
</tr>
<tr>
<td>Cilantro</td>
<td>14.0</td>
<td>0.0</td>
<td>2.01</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>16.01</td>
<td>2.15</td>
</tr>
<tr>
<td>Cítricos</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.88</td>
<td>0.0</td>
<td>2.88</td>
<td>0.39</td>
</tr>
<tr>
<td>Col</td>
<td>2.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.0</td>
<td>0.27</td>
</tr>
<tr>
<td>Elote</td>
<td>0.0</td>
<td>6.09</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>6.09</td>
<td>0.82</td>
</tr>
<tr>
<td>Frutales</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.26</td>
<td>0.0</td>
<td>1.26</td>
<td>0.17</td>
</tr>
<tr>
<td>Granada</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>11.66</td>
<td>0.0</td>
<td>11.66</td>
<td>1.57</td>
</tr>
<tr>
<td>Lechuga</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.13</td>
</tr>
<tr>
<td>Maralfalfa</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.28</td>
<td>0.0</td>
<td>0.0</td>
<td>1.28</td>
<td>0.17</td>
</tr>
<tr>
<td>Melón</td>
<td>0.0</td>
<td>0.0</td>
<td>6.69</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>6.69</td>
<td>0.90</td>
</tr>
<tr>
<td>Napa</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.13</td>
</tr>
<tr>
<td>Nopal</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.73</td>
<td>0.0</td>
<td>0.0</td>
<td>2.73</td>
<td>0.37</td>
</tr>
<tr>
<td>Pepino</td>
<td>0.0</td>
<td>0.0</td>
<td>5.51</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>5.51</td>
<td>0.74</td>
</tr>
<tr>
<td>Pera</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>6.12</td>
<td>0.0</td>
<td>0.0</td>
<td>6.12</td>
<td>0.82</td>
</tr>
<tr>
<td>Rábano</td>
<td>8.0</td>
<td>0.0</td>
<td>2.45</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>10.45</td>
<td>1.40</td>
</tr>
<tr>
<td>Sudán</td>
<td>0.0</td>
<td>0.0</td>
<td>18.59</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>18.59</td>
<td>2.50</td>
</tr>
<tr>
<td>Tomate</td>
<td>0.0</td>
<td>0.0</td>
<td>26.36</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>26.36</td>
<td>3.54</td>
</tr>
<tr>
<td>Tomatillo</td>
<td>0.0</td>
<td>0.0</td>
<td>7.53</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>7.53</td>
<td>1.01</td>
</tr>
<tr>
<td>Verdolaga</td>
<td>23.0</td>
<td>0.0</td>
<td>2.88</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>25.88</td>
<td>3.48</td>
</tr>
<tr>
<td>Vid</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>65.44</td>
<td>0.0</td>
<td>0.0</td>
<td>65.44</td>
<td>8.79</td>
</tr>
<tr>
<td>Total</td>
<td>55.00</td>
<td>334.00</td>
<td>88.69</td>
<td>0.0</td>
<td>223.21</td>
<td>43.46</td>
<td>744.37</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Fuente: SEFOA, 2015b.

Agricultura en Tecate, B.C.

La actividad agrícola del municipio de Tecate es mínima comparada con la de otros valles de Baja California. El uso agrícola de suelo no se desarrolla a gran escala, ya que son más las hectáreas sembradas por temporal que por sistema de riego (Plan Municipal de Tecate 2014-2016:29). El sector agrícola de las superficies sembradas, cosechadas de riesgo y temporal han disminuido del 2001 al 2010. En el 2015, la superficie sembrada total fue de 1,390.83 has. La principal zona cultivable en el municipio se encuentra en el Valle de las Palmas donde se siembra el olivo, abarcando una superficie de 102.72 has para el 2015 (ver CUADRO 70).

De acuerdo con el Equipo de Recuperación del Valle del Río Tijuana (2012), por muchas décadas en el Valle del Río Tijuana en la parte de EE.UU., la agricultura ha estado presente en su historia. Aunque, las actividades agrícolas en terrenos propios o alquilados incluyen fincas orgánicas, sostenibles, que son fuente de hortalizas. Además, existe una huerta comunitaria, administrada por el condado de San Diego permite a los residentes locales cultivar sus propias hortalizas.
CUADRO 70 Superficies sembradas por zona, cultivos cíclicos más perenes en el municipio de Tecate, 2015 (Hectáreas)

<table>
<thead>
<tr>
<th>Cultivo</th>
<th>El Testerazo</th>
<th>Colonia Valle de las Palmas</th>
<th>Ejido baja California</th>
<th>Ejido Nueva Colonia Hindú</th>
<th>Propiedad privada</th>
<th>Vías zonas del municipio</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceituna</td>
<td>0.0</td>
<td>102.71</td>
<td>0.0</td>
<td>0.0</td>
<td>19.25</td>
<td>0.0</td>
<td>121.96</td>
</tr>
<tr>
<td>Alfalfa</td>
<td>0.0</td>
<td>22.37</td>
<td>0.0</td>
<td>0.0</td>
<td>1.40</td>
<td>0.0</td>
<td>23.78</td>
</tr>
<tr>
<td>Avena forrajera</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>365.0</td>
<td>365.0</td>
</tr>
<tr>
<td>Calabacita</td>
<td>23.51</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>23.51</td>
</tr>
<tr>
<td>Cebada forrajera</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>219.00</td>
<td>219.0</td>
</tr>
<tr>
<td>Cebada de grano</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>166.0</td>
<td>166.0</td>
</tr>
<tr>
<td>Cebolla blanca</td>
<td>0.0</td>
<td>4.41</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>4.41</td>
</tr>
<tr>
<td>Chile</td>
<td>6.04</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>6.04</td>
</tr>
<tr>
<td>Cilantro</td>
<td>0.0</td>
<td>0.0</td>
<td>2.23</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.23</td>
</tr>
<tr>
<td>Elote</td>
<td>0.0</td>
<td>1.53</td>
<td>0.0</td>
<td>0.0</td>
<td>0.73</td>
<td>0.0</td>
<td>2.31</td>
</tr>
<tr>
<td>Haba</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Limón</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.63</td>
<td>0.0</td>
<td>0.0</td>
<td>2.63</td>
</tr>
<tr>
<td>Manzana</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.15</td>
<td>0.0</td>
<td>0.0</td>
<td>1.15</td>
</tr>
<tr>
<td>Pasto tapete (m²)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.59</td>
<td>0.0</td>
<td>0.59</td>
</tr>
<tr>
<td>Pasto y praderas</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>330.0</td>
<td>330.0</td>
<td>330.0</td>
</tr>
<tr>
<td>Rábano</td>
<td>0.0</td>
<td>0.0</td>
<td>0.62</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.62</td>
</tr>
<tr>
<td>Sudán</td>
<td>0.0</td>
<td>34.28</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>34.28</td>
</tr>
<tr>
<td>Tomatillo</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>3.42</td>
<td>0.0</td>
<td>0.0</td>
<td>3.42</td>
</tr>
<tr>
<td>Trigo en grano</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>20.0</td>
<td>20.0</td>
<td>20.0</td>
</tr>
<tr>
<td>Vid</td>
<td>0.0</td>
<td>0.77</td>
<td>0.0</td>
<td>50.82</td>
<td>0.0</td>
<td>0.0</td>
<td>51.8</td>
</tr>
<tr>
<td>Zacate</td>
<td>0.0</td>
<td>2.20</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.20</td>
</tr>
<tr>
<td>Total</td>
<td>29.55</td>
<td>168.32</td>
<td>2.86</td>
<td>79.99</td>
<td>1,100</td>
<td>1,390.83</td>
<td>1,390.83</td>
</tr>
</tbody>
</table>

Nota: La información de los ciclos primavera-verano y perennes corresponden al recorrido de campo parcela por parcela realizado por la SEFOA y los datos del ciclo otoño-invierno, corresponden a información de SAGARPA.

Fuente: SEFOA, 2015a
2.9 IMPACTO DE LA INDUSTRIA SOBRE LA REGIÓN Y SUS RECURSOS

Carlos A. de la Parra, Mayra Melgar y Alfonso Camberos

De acuerdo con el PESPA 2015, para el 2013 se tenían registradas 844 empresas que generan descargas de aguas residuales de las cuales el 66% corresponden al sector industrial y el 34% al de comercios y servicios. Sin embargo, el 34% de la industria y el 56% de los comercios y servicios no presentaron su reporte de generación de descargas de aguas residuales ante la Secretaría de Protección al Ambiente, por lo tanto, se desconoce el grado de contaminantes nocivos para la salud poblacional y ambiental.

Ciudad de Tijuana

La ciudad de Tijuana presenta un gran problema a nivel industrial en la generación de aguas residuales provenientes de las actividades de serigrafía, galvanizado y recubrimientos metálicos, mismas que son vertidas a los sistemas de tratamientos primarios en donde se realiza un proceso físico de remoción de sólidos como pintura, grasas y aceites, rebabas metálicas, solventes que contienen compuestos químicos con características prioritariamente tóxicas e inflamables. Áreas en donde la concentración de industria es mayor y se puede inferir una mayor problemática, a excepción de aquellas donde se observa un mayor control y cumplimiento ambiental por parte de las empresas, como podría ser el caso de los parques industriales. Las zonas con mayor concentración de usos industriales en orden de importancia son: Ciudad Industrial, Mesa de Otay, 5 y 10, Parque Industrial el Florido, Terrazas del Valle, Los Pinos, Cerro Colorado, Zona Centro, La Gloria, Nido de las Águilas, San Antonio de los Buenos, Camino Verde, Chapultepec y Playas de Tijuana.

Según el reporte del sector industrial en el año 2013, considerando que el límite máximo permisible es de 75mg/l (NOM-002-SEMARNAT-1996) del parámetro sólidos suspendidos totales (SST) se detectó que ramas del sector industrial como la de las actividades de manufactura, fabricación y ensamble de artículos de plásticos, Impresión, estampado y tratamiento de camisetas, confección de artículos sobrepasan el límite de sólidos suspendidos totales (SST). Con respecto al parámetro grasas y aceites y considerando que el límite máximo permisible es de 50 mg/l, se observó que el ensamble de sensores eléctricos y electrónicos y el ensamble y fabricación de ductos eléctricos de acero o plásticos con cables, están ligeramente al límite o sobrepasan la norma. Para el parámetro demanda bioquímica de oxígeno (DBO) considerando que el límite máximo permisible es de 75mg/l son los que sobrepasan el límite permisible (PESPA, 2015) (ver CUADRO 71).
CUADRO 71 Ramas industriales que sobrepasan los límites permisibles de la NOM-002-SEMARNAT- 1996 en la Ciudad de Tijuana

<table>
<thead>
<tr>
<th>Rama industrial</th>
<th>SST</th>
<th>Grasas y aceites</th>
<th>DBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proceso y comercialización de productos cárnicos y embutido</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impresión, estampado y tratamiento de camisetas, confección de artículos</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actividades de manufactura, fabricación y ensamble de artículos de plásticos</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Ensamble y fabricación de ductos eléctricos de acero o plásticos con cables</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Ensamble de sensores eléctricos y electrónicos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fabricación y manufactura de artículos deportivos</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Laboratorio de análisis fisicoquímicos de muestras de suelo, agua y aire</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con información del PESPA, 2015.

Con respecto a la basura industrial, representa un problema muy particular en ciudades que no cuentan con control y manejo adecuado, como sucede en las ciudades más importantes del país, donde se utilizan sensores automáticos que previenen sobre la presencia de este tipo de desechos peligrosos, evitando que se dispongan en forma inadecuada. En Tijuana, los sitios que manejan sustancias peligrosas, se encuentran dispersos en diferentes puntos de la ciudad, dos se localizan por el área de la Presa L. Rodríguez (IMPLAN, 2010:45) (ver MAPA 18).

MAPA 18 Localización de sitios con manejo de materiales peligrosos, Tijuana, B.C.

Ciudad de Tecate

La actividad económica fundamental de la ciudad de Tecate es la industrial cervecera y la industria maquiladora, y en menor grado la agricultura, la ganadería y el comercio y servicios. Sin embargo, la actividad industrial, excepto el de la cervecería, es relativamente pequeña debido a que las industrias prefieren establecerse en la ciudad de Tijuana, debido a su cercanía y a las mejores ofertas de infraestructura y mano de obra. En el CUADRO 72 se presenta el comportamiento del total de empresas que se encuentran registradas como generadores de residuos de manejo especial y presentaron su reporte anual ante la Secretaría de Protección al Ambiente de B.C. en diferentes años.

CUADRO 72 Empresas registradas como generadoras de residuos de manejo especial, Tecate, B.C.

<table>
<thead>
<tr>
<th>Tecate</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empresas (total)</td>
<td>42</td>
<td>42</td>
<td>44</td>
</tr>
<tr>
<td>Empresas (con reporte anual)</td>
<td>5</td>
<td>10</td>
<td>9</td>
</tr>
</tbody>
</table>

Fuente: elaboración porpia con datos de PESPA, 2015.
2.10 IMPACTO POR LA EXPLOTACIÓN FORESTAL Y ACTIVIDADES AGROFORESTALES

Carlos A. de la Parra, Mayra Melgar y Alfonso Camberos

Las áreas forestales perturbadas incluyen, aquellas que, como resultado de ataques de plagas, incendios recurrentes o mal manejo silvícola presenten problemas para su regeneración natural. En este caso se encuentran en el estado de Baja California al área de bosque piñonero que fue afectado por descortezadores, las zonas de chaparral de la porción norte de la entidad que presenta alta incidencia de incendios.

Incidios forestales

Del 2012 al 2014 se ha presentado una disminución de incendios forestales, para el 2014 la superficie afectada fue de 599 has (ver **CUADRO 73**).

<table>
<thead>
<tr>
<th>Municipio</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Incendios</td>
<td>Superficie afectada (has)</td>
<td>Incendios</td>
</tr>
<tr>
<td>Tijuana</td>
<td>6</td>
<td>657</td>
<td>6</td>
</tr>
<tr>
<td>Tecate</td>
<td>137</td>
<td>11,182</td>
<td>79</td>
</tr>
<tr>
<td>Baja California</td>
<td>232</td>
<td>27,291</td>
<td>208</td>
</tr>
</tbody>
</table>

Fuente: **INEGI**, Anuarios estadísticos de Baja California, varios años.

Deforestarción

La deforestarción se refiere al proceso de cambio de uso del suelo, del forestal a otro tipo de uso; mientras que la degradación forestal son los cambios continuos en la situación actual o en el proceso de desarrollo de un ecosistema forestal, provocados por distintos factores de perturbación, que disminuyen su capacidad para mantener o aplicar su potencial de productividad, produce la reducción de densidad, biomasa, calidad del arbolado e impacta en las condiciones del suelo, sin implicar un cambio de uso del suelo o disminución de la superficie forestal afectada (**SEMARNAT, 2003**). La **CONAFOR (2006)** estimó que Baja California presenta un total de 430,218 ha con diversos niveles de riesgo de deforestarción, de éstas 20,182 ha presentan un riesgo muy alto (ver **CUADRO 74**). En el país, como en la RHA I Península de Baja California, la deforestarción ha provocado una fuerte erosión, principalmente eólica de los suelos, ocasionando un menor control natural del escurrimiento superficial y una menor recarga de acuíferos.
CUADRO 74 Riesgo de deforestación en los municipios de la Cuenca del Río Tijuana

<table>
<thead>
<tr>
<th>Riesgo</th>
<th>Hectáreas</th>
<th>Total (has)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tijuana</td>
<td>Tecate</td>
</tr>
<tr>
<td>Muy bajo</td>
<td>3,849</td>
<td>25,334</td>
</tr>
<tr>
<td>Bajo</td>
<td>1,923</td>
<td>33,995</td>
</tr>
<tr>
<td>Medio</td>
<td>773</td>
<td>36,526</td>
</tr>
<tr>
<td>Alto</td>
<td>521</td>
<td>7,736</td>
</tr>
<tr>
<td>Muy alto</td>
<td>63</td>
<td>4,905</td>
</tr>
<tr>
<td>Total</td>
<td>7,129</td>
<td>108,496</td>
</tr>
</tbody>
</table>

La forma fragmentada e incontrolada en que se ha dado el crecimiento urbano ha causado índices de deforestación muy altos, incrementando la erosión del suelo, se sabe que casi un 15% del área ocupada por Tijuana es susceptible al proceso de erosión-remoción en masa principalmente en cañadas, lomeríos y cerros (Ojeda y Álvarez, 2000).
El cambio climático puede impactar el ciclo hídrico y procesos que tienen lugar en cuencas hidrográficas tales como escorrentías, enriquecimiento de nutrientes, carga de sedimentos y tasas de evapotranspiración (Band et al, 1996; Chang et al, 2000). Dichos impactos se ven determinados por incrementos en temperaturas superficiales (Marshal & Randhir, 2008) y variaciones en la precipitación (Stone et al, 2001). Sin embargo, los impactos varían de acuerdo a la ubicación geográfica y estado del sistema ecológico y social (SES) de la propia cuenca. La magnitud de los impactos depende de la resiliencia y el SES, entendiéndose la primera como la habilidad del SES para absorber disturbios climáticos y re-organizarse en el presente o transformarse a nuevos estados estables (Randhir, 2014).

Los impactos del cambio climático sobre la Cuenca del Río Tijuana (CRT) han sido estudiados, aunque una revisión bibliográfica de literatura especializada develó que hay sólo un par de estudios en el área; uno versa sobre el modelaje de los impactos de la variabilidad climática en los procesos en la CRT y el otro se enfoca en la vulnerabilidad climática. Dada la importancia, ambos se describen en detalle a continuación.

Das et al (2010) usaron observaciones históricas de la precipitación pluvial, temperaturas máximas y mínimas y velocidad del viento en el periodo 1950 a 1999 como datos de malla a 1/8 de resolución espacial para el área entera de la CRT (en México y los E.U.), con estos datos se determinó el patrón climático base; éste sirvió de línea base para posteriormente estimar las proyecciones de cambio climático al siglo XXI para la temperatura y precipitación en celdas separadas por uno o dos grados de latitud y 100 a 200 km de longitud, usando tres modelos climáticos globales que acoplan océano y atmósfera: CNRM CM3, GFDL CM2.1 y NCAR PCM1; bajo dos escenarios de emisiones; media-alta (SRES A2) y baja (SRES B1). Estas estimaciones a gran escala se redujeron a mallas de 12 km usando el método de escala de análogos construidos. Finalmente se modelaron las respuestas del sistema hidrológico de la CRT usando el modelo hidrológico superficie-tierra de la capacidad variable de infiltración (VIC) y manteniendo fijos los valores de suelo y vegetación, en 27 celdas resultantes (ver MAPA 19).

El estudio también incluye un análisis de sensibilidad en las escorrentías por variaciones de calentamiento, sequía y precipitación usando seis escenarios; los primeros tres consideran un efecto incremental en un grado en la temperatura (1, 2 y 3 °C), el escenario cuatro considera un aumento uniforme de 10% de precipitación en tanto que el escenario cinco considera una reducción del 10%. El sexto y último escenario establece una combinación de un aumento de temperatura de 2°C y una reducción de precipitación de 10%. Los resultados de dicho análisis sugirieron
que a mayores temperaturas se reducen los escurrimientos, por ejemplo, aumentos de temperaturas en 1, 2 y 3°C ocasionaron reducciones del orden de 3, 6 y 8-9% de escorrentías. Las disminuciones de precipitación también condujeron a reducciones de escorrentías; por ejemplo, una baja del 10% en la precipitación resultó en una reducción promedio de alrededor de 20% de escorrentías.

En ese análisis de sensibilidad también se encontró que la reducción anual de precipitación podría suceder entre enero y mayo, cuando la evapotranspiración aumentaría, misma que decrecería en función de la humedad del suelo. Por su parte, bajo el escenario seis que considera un aumento de temperatura de 2°C y una reducción de 10% de precipitación, se encontró una disminución de cerca del 23% de escorrentías. Además, se halló que los escurrimientos variarían espacialmente a lo largo de la CRT, con mayor sensibilidad en las partes de mayor precipitación (y por tanto mayor generación de escorrentías) ubicadas principalmente en las áreas al norte de la Cuenca y de la frontera.

En relación a la incertidumbre de los cambios climáticos proyectados, se identificaron dos:

1. Las variaciones naturales decadales y multi-decadales de precipitación en la CRT.
2. Las diferencias entre los modelos usados.

En todos los casos las predicciones de las tendencias de cambios de temperatura fueron más uniformes que las de precipitación. Así, los tres modelos usados predijeron un alza de temperatura para final de siglo de cerca de +1°C.
bajo un escenario de emisiones bajas; y de +3°C en el de emisiones altas; bajo este último escenario los tres modelos sugirieron que los veranos serían más calurosos, de hecho, no se estimó ningún verano templado a partir del año 2025. La sequedad veraniega estuvo fuertemente relacionada a la falta de precipitación; pero el efecto se vio amplificado por el alza de temperatura. Por su parte para las proyecciones de la precipitación, dos modelos (GFDL y CNRM) estimaron una reducción de entre 3% a 10%; el tercero (PCM) estimó un incremento del 15%. Por su parte, para los años lluviosos, se proyectó que las escorrentías disminuirían para el periodo 2070-2099 en comparación a lo observado durante 1961-1990. El modelo CNRM estimó cerca de una reducción del 8%, el modelo GFDL un decremento de 25% y el modelo CM1 un incremento de alrededor de 30% hacia final de siglo.

El segundo estudio sobre cambio climático y la CRT, no es específico al área, pero la incluye como parte de la red nacional de 28 áreas protegidas en los Estados Unidos. En los siguientes párrafos, se presenta en forma resumida lo que concierne a la CRT de la investigación desarrollada por Robinson et al, 2013; este estudio examinó sensibilidades biofísicas y socioeconómicas de las áreas al cambio climático para lo cual se estudiaron atributos físicos, ecológicos y socio-demográficos, se identificaron los estresores más importantes, se estimó la resiliencia ecológica del área y se categorizó a la misma usando su potencial de sensibilidad climática a cambios proyectados de temperatura y alza del nivel del mar.

Los resultados del estudio de Robinson et al (2013) mostraron que la Reserva del Río Tijuana tiene una baja resiliencia ecológica, esto significa que el área posee un mayor riesgo a los impactos del cambio climático. También se encontró que la Reserva tenía una sensibilidad biofísica alta, de hecho, la más alta de todas las reservas analizadas (4.8), y que dicho valor fue determinado por el alto grado de urbanización aguas arriba. Este estudio ofrece una detallada descripción de la sensibilidad climática de la CRT, y por lo tanto se describirá con mayor detalle en la siguiente sección.

Por la relevancia futura que guardan los impactos del cambio climático en la CRT, el presente documento tiene por objetivo general reportar sobre la sensibilidad climática del área y las medidas de adaptación para afrontarla. A fin de alcanzar este objetivo el presente escrito se divide en dos partes. La primera describe la sensibilidad climática del área en dimensiones sociales, biofísicas y ecológicas de la CRT tomando lo reportado por Robinson et al (2013) para la parte de CRT en los Estados Unidos, y el reporte de indicadores similares, pero no comparables en el lado mexicano. La segunda parte analiza y resume los planes de adaptación vigentes que inciden en la CRT, en ambos lados de la frontera.

Sensibilidad climática de la CRT

Como se mencionó en la sección anterior, el estudio de Robinson et al (2013) será detallado en esta sección, sin embargo, el citado estudio es específico para el tercio de la CRT que se localiza en Estados Unidos; así a fin de tener
una dimensión de los otros 2/3 ubicados en el lado mexicano, la autora definió indicadores similares a los usados por Robinson *et al.*, recurriendo a información proveniente de Censos Económicos, Directorio Estadístico Nacional de Unidades Económicas (DENUE), Anuarios Estadísticos para Baja California, Consejo Nacional de Evaluación de la Política de Desarrollo Social e Instituto Nacional de Estadística Geografía e Informática (INEGI). Es importante remarcar que los indicadores aquí mostrados no son comparables dado que ni la definición conceptual de los elementos, ni la colección de datos, ni el periodo cubierto son homogéneos. A pesar de esto, se presentan a fin de tener una caracterización gruesa de la sensibilidad climática en toda la CRT.

Impacto económico

Las actividades económicas se sostienen de los ecosistemas locales, y cualquier riesgo climático que tenga el potencial de afectar a éstos, afectará por ende a las economías dependientes, no sólo en la Cuenca o reserva sino en los alrededores. Es por esta razón que es crucial dimensionar la magnitud de la contribución económica de la CRT y su reserva en los alrededores.

Estados Unidos

De acuerdo a Robinson *et al.* (2013), para desarrollar el análisis económico de la reserva del Río Tijuana, se usaron los datos del Programa del Observatorio Nacional Oceánico (ENOW) y del Programa Económico Nacional del Océano (NOEP), ambos colectados para el año 2009. Los sectores económicos considerados fueron: recursos biológicos, construcción de infraestructura marítima, transportación marítima, recursos minerales oceánicos, construcción de barcos, y turismo y recreación. Los resultados se muestran en el **CUADRO 75**.

CUADRO 75 Análisis Económico de la parte estadounidense de la Cuenca del Río Tijuana (2009)

<table>
<thead>
<tr>
<th>No. de establecimientos</th>
<th>Representación porcentual en el Condado (RPC) %</th>
<th>No. empleos</th>
<th>RPC %</th>
<th>Salarios</th>
<th>RPC %</th>
<th>PIB</th>
<th>RPC %</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,783</td>
<td>2.9</td>
<td>73,635</td>
<td>5.9</td>
<td>$2,425,363,797</td>
<td>3.9</td>
<td>$4,951,318,615</td>
<td>3.3</td>
</tr>
</tbody>
</table>

Fuente: Robinson *et al.,* 2013.

México

Para el análisis económico del lado mexicano se usaron los datos reportados en el Anuario Estadística de Baja California de 2011 (INEGI & BC, 2011), donde se reportan valores para el año 2008 (los más recientes y aún vigentes). Dichos datos se cruzaron con los reportados en INEGI y DENUE, sobre todo para la distribución espacial municipal de las unidades económicas.

Del anuario se usó la Sección 10, Información económica agregada; el análisis se centró en el estudio de las variables: número de los establecimientos, número de empleos generados, remuneraciones y producción bruta total.
de los municipios de Tecate y Tijuana. Si bien las áreas municipales son mayores que el área de la CRT, las actividades económicas se concentran en las ciudades homónimas, las cuales si se ubican dentro de la CRT.

Las contribuciones porcentuales de dichos municipios a las estadísticas estatales son: 51, 61, 60 y 52% a las unidades económicas, personal ocupado, remuneraciones y producción bruta total estatales; respectivamente. Las actividades económicas consideradas fueron: industrias manufactureras, actividades comerciales, servicios no financieros, agricultura, cría y explotación de animales, aprovechamiento forestal, pesca y caza, minería, generación, transmisión y distribución de energía eléctrica, suministro de agua y de gas por ductos al consumidor final, construcción, transporte, correos y almacenamiento, y servicios financieros y de seguros. Los resultados se muestran en el CUADRO 76.

CUADRO 76 Análisis económico de la parte mexicana de la Cuenca del Río Tijuana (2009)

<table>
<thead>
<tr>
<th>Municipio</th>
<th>Unidades económicas</th>
<th>Personal ocupado remunerado dependiente de la razón social</th>
<th>Remuneraciones (miles de pesos)</th>
<th>Remuneraciones (en dólares)</th>
<th>Producción bruta total (miles de pesos)</th>
<th>Producción bruta total (en dólares)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tecate</td>
<td>2 746</td>
<td>15 297</td>
<td>1 504 395</td>
<td>135 165 768</td>
<td>9 693 778</td>
<td>870 959 389</td>
</tr>
<tr>
<td>Tijuana</td>
<td>38 494</td>
<td>292 078</td>
<td>29 150 089</td>
<td>2619 055 615</td>
<td>136 546 926</td>
<td>12268 367 116</td>
</tr>
<tr>
<td>Total</td>
<td>41 240</td>
<td>307 375</td>
<td>30 654 484</td>
<td>2 754 221 384</td>
<td>146 240 704</td>
<td>1 313 932 505</td>
</tr>
</tbody>
</table>

Fuente: Anuario Estadístico de Baja California, 2010.

Como se observa en el CUADRO 76, también se reportan las remuneraciones y producción bruta total en dólares, estas fueron estimadas usando el tipo de cambio al final del periodo 2008 reportados por Centro de Finanzas Públicas, Cámaras de Diputados (http://www.cefp.gob.mx) para el periodo 1998-2015.

Es relevante notar la vocación económica distinta del giro de los establecimientos a lado y lado de la frontera; y como era de esperarse el mayor grado de dependencia económica en el lado mexicano.

Sensibilidad climática social

Estados Unidos

En el estudio de Robinson et al (2013) se desarrolló un índice de vulnerabilidad social usando una versión modificada de la metodología de Cutter et al. (2003) y la Universidad de Carolina del Sur (2012). Este se obtiene mediante análisis factorial con extracción (varimax) de componentes principales donde las variables interdependientes fueron:

- Raza y etnicidad
- Dependencia social
- Estatus socio-económico
- Educación
- Empleo
La sensibilidad social para la reserva del Río Tijuana del lado estadounidense fue alta —y por lo tanto con una alta vulnerabilidad climática— porque tuvo altos porcentajes de población de origen hispano y asiático, así como altos porcentajes de población bajo asistencia social, bajos salarios y altos índices de desempleo.

Vale notar que en el estudio de Robinson et al, se hizo un intento por estimar una medida de la sensibilidad social del lado mexicano, más se llegó a la conclusión que las disparidades de los datos eran demasiado profundas para realizar un estudio similar al reportado.

México

En México la vulnerabilidad social se asocia a la pobreza, ésta es considerada como un fenómeno multidimensional y se mide también mediante una metodología de análisis factorial con extracción de componentes principales similar a la metodología usada en Estados Unidos, aunque el marco conceptual es distinto y por consecuencia las variables colectadas. La entidad gubernamental responsable de la medición de la pobreza en México es el Consejo Nacional de Evaluación de la Política de Desarrollo Social (CONEVAL), organismo que publica los resultados de las estimaciones de pobreza cada dos años a nivel nacional y estatal (2008, 2010 y 2012). La primera estimación de pobreza a escala municipal se realizó con información de 2010 y su actualización se llevará a cabo, de acuerdo con lo que marca la Ley General de Desarrollo Social (LGDS), con una periodicidad de cinco años.

Las estimaciones de pobreza cubren tres categorías:

1. El bienestar económico (medido a través del ingreso de las personas),
2. El espacio de los derechos sociales (a partir de seis carencias sociales relacionadas con la educación, salud, seguridad social, calidad y espacios de la vivienda y los servicios básicos asociados a ella, así como la alimentación), y
3. El grado de cohesión social. La metodología identifica a una persona pobre como aquella que padece una o más carencias sociales y cuyo ingreso es insuficiente para adquirir una canasta de bienes y servicios básicos (CONEVAL, 2014).

Para tener una dimensión gruesa de la pobreza como medida de vulnerabilidad social en la CRT del lado mexicano, se tomó el porcentaje de población con carencias sociales (ver CUADRO 77) e índice de rezago social (ver FIGURA 6) para la zona metropolitana de Tijuana (ZMT) al 2010; la cual está conformada por tres municipios: Tecate, Tijuana y Playas de Rosarito y cuenta con una población total de 1 millón 575 mil 026.
Como se observa en el CUADRO 77, las carencias que más afectaron a la población de la ZMT en 2010 fueron las de accesos a los servicios de seguridad social y de salud, y en menor grado la carencia por calidad y espacios de la vivienda. Estos resultados revelan la vulnerabilidad de la población ante embates climáticos, es decir, que hay un porcentaje considerable de la población que no tendría los medios de afrontar daños y perjuicios a su persona. Estimaciones mostraron que 30% de la población en la ZMT (600,00 habitantes) son pobres y 3.5 % (70,000) se encuentra en pobreza extrema.

En MAPA 20 se muestra la distribución espacial del grado de rezago social, esta es una medida ponderada que resume cuatro indicadores de carencias sociales (educación, salud, servicios básicos y espacios en la vivienda).

Por otro lado, la sensibilidad climática – a inundaciones, deslaves y estrés hídrico - ha sido estimada para el municipio de Tijuana para el año 2010 (Sánchez Rodríguez et al, 2014) encontrándose que esta es muy alta en un 5.45%, alta en 20.56%, media 29%, baja 27.24% y muy baja el 17.75%. La metodología también multidimensional, se desarrolló para este estudio bajo la justificación que la vulnerabilidad social del CONEVAL había sido diseñada con otro objetivo y no atendía a los procesos de exposición climática propios del municipio de Tijuana.

Sensibilidad biofísica

Estados Unidos

El índice de sensibilidad biofísica diseñado en el estudio de Robinson et al (2013) tuvo como objetivo evaluar la relación entre el clima y la calidad del agua a nivel reserva; este puede tomar valores en una escala que van de muy alto (10) a muy bajo (1). El citado índice surge de la relación de regresión entre temperatura atmosférica en primavera y precipitación; y variables de calidad del agua, tales como temperatura (del agua), turbiedad, conductividad, pH y oxígeno disuelto. El valor del índice se relacionó a una gradiente de sensibilidad al cambio climático, así a menores valores del índice, mayor sería el estrés y por lo tanto menor la resiliencia o mayor la vulnerabilidad al cambio climático. Los resultados para la Reserva de Río Tijuana indicaron que la sensibilidad biofísica es baja (4.8) y que el área es altamente sensible al cambio climático o tiene baja resiliencia.

México

En México existe un Atlas Nacional de Vulnerabilidad al Cambio Climático (ANVCC), sin embargo, las estimaciones a los diversos escenarios no son específicas para un área tal como la CRT. Una aproximación gruesa a esta dimensión podría ser la calidad del agua para el Río Tijuana.

La Comisión Nacional del Agua (CONAGUA) es el organismo encargado de la evaluación de la calidad del agua mediante las estaciones de monitoreo que conforman la Red Nacional, los datos cubren tres indicadores: la Demanda Bioquímica de Oxígeno a cinco días (DBOS), la Demanda Química de Oxígeno (DQO) y los Sólidos Suspendidos Totales (SST). La DBOS y la DQO se utilizan para determinar la cantidad de materia orgánica presente en los cuerpos de agua provenientes principalmente de las descargas de aguas residuales. Por su parte, los SST tienen su origen en las aguas residuales y la erosión del suelo. Hacia 2009, estos indicadores para el Río Tijuana diagnosticaron la calidad del agua como fuertemente contaminada (CONAGUA, 2011).

Adaptación al cambio climático de la CRT

Conforme lo descrito en la sección anterior, la CRT es altamente vulnerable y debería ser objeto de planeación adaptativa a fin de atenuar los cambios climáticos presentes y futuros; sus impactos en el bienestar y salud públicos, y la calidad de vida.

Del lado estadounidense, se han preparado documentos que lidian con el tema y ofrecen estrategias, en particular “Sea Level Rise. Adaptation Strategy for San Diego Bay” (San Diego Foundation & U.S.ICLEI; 2012). La estrategia de adaptación ahí definida está conformada de dos partes; la primera es una evaluación de la vulnerabilidad del impacto del alza del nivel del mar en la comunidad; en tanto que la segunda parte lista recomendaciones para la construcción de la resiliencia de los recursos comunitarios. De igual manera en la reserva del valle del Río Tijuana se desarrolla al momento el proyecto Climate Understanding& Resilience in the River Valle, que tiene como objetivos
evaluar la vulnerabilidad, diseñar estrategias de adaptación climática y marco de acción y transferencia de conocimientos. El proyecto se enfoca en los efectos de las inundaciones causadas por alza del nivel del mar y desborde de ríos; y contempla como herramientas de manejo el desarrollo de infraestructura y la conservación del ambiente.

Para el lado mexicano de la CRT, no se identificó ninguna iniciativa para adaptar la CRT a los potenciales efectos del cambio climático, tampoco existe un plan de adaptación a nivel urbano, metropolitano ni municipal de Tijuana. Sin embargo, si existe un plan de adaptación a nivel estatal, que es parte del Plan Estatal de Acción ante el Cambio Climático, herramienta gubernamental vigente desde 2012 donde se establecen medidas tangenciales que podría influir en el impacto de variabilidad climática, en particular inundaciones, en particular se desarrollan dos estrategias, y ambas se relacionan al desarrollo de infraestructura urbano, en particular en la ciudad de Tijuana (SPA, 2012):

- Creación de drenaje pluvial y pavimentación hidráulica
- Creación de un fondo permanente para limpieza de cajones desarenadores y sedimentadores y drenajes pluviales

Recomendaciones:

A lo largo de este documento, se mostró –a pesar de las disparidades en lo datos usados para cada lado de la frontera – que la CRT tiene un alto grado de sensibilidad climática y una baja resiliencia a los efectos asociados al cambio climático. Y que una mejor planeación y manejo para enfrentarla debería contemplar una acción coordinada y conjunta, previa armonización de conceptos claves y metodologías comunes para poder hacer comparaciones válidas.

Los dos estudios existentes sobre la CRT del lado estadounidense recomiendan que dada la naturaleza intermitente de los flujos el Río Tijuana, un estudio binacional sobre el efecto de la presencia de eventos hidrometeorológicos extremos, específicamente lluvias intensas, sería muy relevante. Pero tendría que usarse mallas de escalas menores y modelos hidrológicos más sofisticados; y extender las redes de monitoreo actuales (Robinson et al, 2013)

Otra recomendación que se desprende del estudio de Robinson et al (2013) es que los estudios futuros sobre as CRT deberían ser multidisciplinarios incluyendo dimensiones sociales y biofísicas; e involucrar al personal de la reserva. Además, hay que agregar que, en tales estudios, un producto debería ser la creación de mecanismos necesarios para comunicar a los planeadores que deben proceder aún con la incertidumbre actual.

Por último, dado que la magnitud de los impactos climáticos depende del estado del sistema ecológico y social, es crucial la comunicación, participación e involucramiento de los actores claves, tales como aquellos involucrados en
el crecimiento urbano en Tijuana, entidades gubernamentales, desarrolladores inmobiliarios y usuarios de la vivienda. Sin estos será una tarea casi imposible desarrollar y establecer la habilidad eficiente y eficaz para absorber disturbios climáticos y re-organizarse en el presente o transformarse a nuevos estados estables en la CRT.
2.12 Problemática social, económica y vivienda

Juan Manuel Rodríguez Esteves

Pobreza en la Cuenca del Río Tijuana

Tecate y Tijuana

Las condiciones sociales, políticas y culturales que se mantienen en la CRT determinan de manera importante su relación con el uso y reúso de los recursos hídricos. El municipio de Tecate mantiene, en lo general, mejores condiciones que respecto al municipio de Tijuana hasta el 2010, pero manteniendo diferencias respecto a su contraparte en Estados Unidos. Un indicador que puede aportar más elementos para el análisis de las condiciones sociales dentro de la CRT es el nivel o grado de pobreza que enfrenta la población y su relación con el recurso agua.

La condición de pobreza para el estado de Baja California es una de las menores registradas por el Consejo Nacional de Evaluación de la Política de Desarrollo Social (CONEVAL), el cual considera diferentes variables para calcular los porcentajes de población en pobreza a nivel municipal, por ejemplo, se considera el ingreso, rezago educativo, acceso a salud pública, acceso a alimentación, servicios básicos en la vivienda, entre otros. De esta forma, el CONEVAL ubicó en 2016 al estado de Baja California en el lugar 30 en cuanto al porcentaje de población en condición de pobreza en 2016, solo por debajo de Nuevo León y Baja California Sur, esto significa que el estado se ubica dentro de los tres estados de México con menos población en condición de pobreza. Para el caso de la pobreza extrema, el estado se ubicó en el lugar 31, solo por debajo nuevamente del estado de Nuevo León, lo que indica que es el segundo estado con menor población en condición de pobreza extrema (CONEVAL, 2017).

Por lo que respecta a la CRT, en su contraparte mexicana, los CUADROS 78 y 79 muestran el desglose de los indicadores relacionados con la pobreza a nivel municipal, tanto para Tecate como para Tijuana, presentando los datos de 2010 y 2015 a manera de comparación y observar los cambios que se presentaron para reducir la pobreza en la región.
CUADRO 78 Porcentaje de población según indicadores de pobreza en los municipios de Tecate y Tijuana (2010)

<table>
<thead>
<tr>
<th>Población</th>
<th>Porcentaje de población en situación de pobreza</th>
<th>Porcentaje de población en situación de pobreza moderada</th>
<th>Porcentaje de población en situación de pobreza extrema</th>
<th>Porcentaje de población vulnerable por carencias sociales</th>
<th>Porcentaje de población con carencia por rezago educativo</th>
<th>Porcentaje de población con carencia por acceso a los servicios de salud</th>
<th>Porcentaje de población con carencia por acceso a la seguridad social</th>
<th>Porcentaje de población con carencia por calidad y espacios de la vivienda</th>
<th>Porcentaje de población con carencia por acceso a los servicios básicos en la vivienda</th>
<th>Porcentaje de población con carencia por acceso a la alimentación</th>
</tr>
</thead>
<tbody>
<tr>
<td>89,999</td>
<td>29.6</td>
<td>27.0</td>
<td>2.6</td>
<td>37.6</td>
<td>16.3</td>
<td>25.0</td>
<td>49.7</td>
<td>9.4</td>
<td>12.0</td>
<td>11.5</td>
</tr>
<tr>
<td>1,635,974</td>
<td>31.1</td>
<td>27.6</td>
<td>3.5</td>
<td>39.5</td>
<td>16.3</td>
<td>36.3</td>
<td>54.5</td>
<td>9.6</td>
<td>2.3</td>
<td>18.3</td>
</tr>
</tbody>
</table>

CUADRO 79 Porcentaje de población según indicadores de pobreza en los municipios de Tecate y Tijuana (2015)

<table>
<thead>
<tr>
<th>Población</th>
<th>Porcentaje de población en situación de pobreza</th>
<th>Porcentaje de población en situación de pobreza moderada</th>
<th>Porcentaje de población en situación de pobreza extrema</th>
<th>Porcentaje de población vulnerable por carencias sociales</th>
<th>Porcentaje de población con carencia por rezago educativo</th>
<th>Porcentaje de población con carencia por acceso a los servicios de salud</th>
<th>Porcentaje de población con carencia por acceso a la seguridad social</th>
<th>Porcentaje de población con carencia por calidad y espacios de la vivienda</th>
<th>Porcentaje de población con carencia por acceso a los servicios básicos en la vivienda</th>
<th>Porcentaje de población con carencia por acceso a la alimentación</th>
</tr>
</thead>
<tbody>
<tr>
<td>110,870</td>
<td>26.6</td>
<td>24.9</td>
<td>1.7</td>
<td>37.5</td>
<td>14.0</td>
<td>11.5</td>
<td>44.4</td>
<td>11.7</td>
<td>17.1</td>
<td>13.3</td>
</tr>
<tr>
<td>1,693,494</td>
<td>29.5</td>
<td>27.6</td>
<td>1.8</td>
<td>33.1</td>
<td>12.7</td>
<td>21.0</td>
<td>46.3</td>
<td>8.4</td>
<td>7.3</td>
<td>13.9</td>
</tr>
</tbody>
</table>

Según el CONEVAL, “una persona se encuentra en situación de pobreza cuando tiene al menos una carencia social (en los indicadores de rezago educativo, acceso a servicios de salud, acceso a la seguridad social, calidad y espacios de la vivienda, servicios básicos en la vivienda y acceso a la alimentación) y si su ingreso es insuficiente para adquirir los bienes y servicios que requiere para satisfacer sus necesidades alimentarias y no alimentarias”.

Por su parte, una persona esta en pobreza extrema cuando “Una persona se encuentra en situación de pobreza extrema cuando tiene tres o más carencias sociales, de seis posibles y, además, su ingreso total es menor que la línea de bienestar mínimo. La población en esta situación dispone de un ingreso tan bajo que aun si lo dedicase por completo a la adquisición de alimentos, no podría acceder a aquellos que componen la canasta alimentaria” (CONEVAL, 2017).

Los datos de los CUADROS 78 y 79 muestran cierta mejora en cuanto a la reducción de la pobreza casi en todos los indicadores, así por ejemplo, durante 2010 el municipio de Tecate presentó menores niveles de pobreza respecto a Tijuana, excepto en el porcentaje de población con carencia por acceso a servicios básicos en la vivienda, situación que se puede explicar debido a un mayor porcentaje de población municipal que vive en localidades rurales, por ejemplo en Valle de las Palmas, El Hongo, etc.

Para el 2015, el municipio de Tijuana mostró mejores indicadores en la reducción de la pobreza con respecto a Tecate, sin embargo, nuevamente el porcentaje de población con carencia por acceso a servicios básicos en la vivienda es más alto en Tecate, debido a su alto porcentaje de población rural. En términos globales, ambos municipios tienen mejores porcentajes de población en situación de pobreza, pero sigue presentando altos porcentajes en los indicadores de carencias sociales como son rezago educativo, salud, seguridad social, calidad de la vivienda, servicios públicos básicos y alimentación. Una mención aparte es el porcentaje de población con ingreso inferior a la línea de bienestar mínimo, donde casi llega al 10% en ambos años tanto en Tecate como en Tijuana. Para noviembre de 2017 la línea de bienestar mínimo (canasta alimentaria) por persona estuvo en los $1,052 pesos mensuales en localidades rurales y de $1,475 pesos mensuales en localidades urbanas.

San Diego, California

El estado de California es uno de los estados en Estados Unidos con mayores estándares de bienestar social, sin embargo, muestra valores de población en condición de pobreza superiores al nacional al llegar al 14.4%, siendo el nacional de 14.0%. Por lo que respecta al condado de San Diego, el porcentaje de población en pobreza es más bajo que el porcentaje estatal, llegando a solo el 12.4% en el 2016.

La pobreza en Estados Unidos es calculada de manera diferente a la que se utilizada en México. En Estados Unidos el indicador principal para medir la pobreza es el ingreso de los miembros de una familias, el cual estará en función con su tamaño y la composición de la misma, cuando ese ingreso está por debajo del estándar nacional, entonces esa
familia está en condición de pobreza. Para el 2016, el umbral de pobreza de una familia (dos adultos y dos niños) fue de 24,339 dólares anuales. El CUADRO 80 presenta los valores de pobreza para San Diego, California.

CUADRO 80 Población en condición de pobreza en el condado de San Diego, California 2000-2014

<table>
<thead>
<tr>
<th>Año</th>
<th>Población absoluta</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>302,668</td>
<td>10.9</td>
</tr>
<tr>
<td>2001</td>
<td>307,213</td>
<td>10.9</td>
</tr>
<tr>
<td>2002</td>
<td>311,688</td>
<td>10.9</td>
</tr>
<tr>
<td>2003</td>
<td>331,677</td>
<td>11.6</td>
</tr>
<tr>
<td>2004</td>
<td>308,791</td>
<td>10.9</td>
</tr>
<tr>
<td>2005</td>
<td>310,376</td>
<td>11.0</td>
</tr>
<tr>
<td>2006</td>
<td>330,618</td>
<td>11.7</td>
</tr>
<tr>
<td>2007</td>
<td>319,404</td>
<td>11.1</td>
</tr>
<tr>
<td>2008</td>
<td>364,576</td>
<td>12.6</td>
</tr>
<tr>
<td>2009</td>
<td>372,782</td>
<td>12.5</td>
</tr>
<tr>
<td>2010</td>
<td>445,556</td>
<td>14.8</td>
</tr>
<tr>
<td>2011</td>
<td>462,997</td>
<td>15.2</td>
</tr>
<tr>
<td>2012</td>
<td>465,651</td>
<td>15.1</td>
</tr>
<tr>
<td>2013</td>
<td>476,184</td>
<td>15.3</td>
</tr>
<tr>
<td>2014</td>
<td>467,248</td>
<td>14.7</td>
</tr>
<tr>
<td>2015</td>
<td>445,958</td>
<td>13.9</td>
</tr>
<tr>
<td>2016</td>
<td>400,028</td>
<td>12.4</td>
</tr>
</tbody>
</table>

Como lo muestra el CUADRO 80, fue el año 2013 en el que se registró un mayor porcentaje de población en San Diego con mayor pobreza, y que también se refleja en el número de población, a partir de ese año, tanto el porcentaje como los valores absolutos de población en pobreza se redujo. De esta forma, y considerando solo los porcentajes de pobreza, tanto la parte mexicana como la estadounidense mantienen niveles relativamente bajos de pobreza y pobreza extrema si se comparan con los valores nacionales, lo que hace suponer que las condiciones sociales en la CRT podrían presentar oportunidades favorables para un mejor manejo de los recursos hídricos y de la planeación ambiental.

Marginación

Las condiciones de marginación son complementarias a las condiciones de pobreza, ya que es un fenómeno estructural múltiple que valora dimensiones, formas e intensidades de exclusión en el proceso de desarrollo y disfrute de sus beneficios. Para su cálculo, se debe considerar cuatro dimensiones socioeconómicas: educación, vivienda, distribución de la población e ingresos monetarios.

De acuerdo con la CONAPO, “la marginación como fenómeno estructural expresa la dificultad para propagar el progreso en el conjunto de la estructura productiva, pues excluye a ciertos grupos sociales del goce de beneficios que otorga el proceso de desarrollo. La precaria estructura de oportunidades sociales para los ciudadanos, sus
familias y comunidades los expone a privaciones, riesgos y vulnerabilidades sociales que, a menudo, escapan al control personal, familiar y comunitario, cuya reversión requiere del concurso activo de los agentes públicos, privados y sociales” (CONAPO, 2017).

El **Cuadro 81** presenta los principales indicadores socioeconómicos y el grado de marginación a nivel municipal y estatal para el 2010. Como se indica, en ambos casos de registra un grado muy bajo de marginación, siendo Tecate el municipio que muestra más carencias en este indicador con respecto a Tijuana, siendo el municipio también que muestra una mayor población en localidades con menos de 5,000 habitantes. De manera particular, los **Cuadros 82 y 83** muestran los índices de marginación a nivel de localidad (solo mayores a 100 habitantes).
CUADRO 81 Población total, indicadores socioeconómicos, índice y grado de marginación a nivel estatal y municipal (2010)

<table>
<thead>
<tr>
<th>Municipio</th>
<th>Población total</th>
<th>% Población de 15 años o más analfabeta</th>
<th>% Ocupant en vivienda sin drenaje ni excusado</th>
<th>% Ocupant en vivienda sin energía eléctrica</th>
<th>% Ocupant en viviendas sin piso de tierra</th>
<th>% Población ocupada con ingresos de 5 000 habitante s</th>
<th>% Población ocupada con ingresos de hasta 2 salarios mínimo s</th>
<th>% Población ocupada con ingresos de menos de 5 000 habitante s</th>
<th>% Población ocupada con ingresos de menos de 2 salarios mínimo s</th>
<th>Grado de marginación</th>
<th>Índice de marginación escala 0 a 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baja Californ ia</td>
<td>3,155,070</td>
<td>2.60</td>
<td>12.99</td>
<td>0.43</td>
<td>0.95</td>
<td>3.56</td>
<td>29.06</td>
<td>3.40</td>
<td>10.35</td>
<td>21.87</td>
<td></td>
</tr>
<tr>
<td>Tecate</td>
<td>101,079</td>
<td>2.48</td>
<td>15.00</td>
<td>0.81</td>
<td>2.50</td>
<td>10.64</td>
<td>29.04</td>
<td>3.28</td>
<td>29.39</td>
<td>24.57</td>
<td>Muy bajo</td>
</tr>
<tr>
<td>Tijuana</td>
<td>1,559,683</td>
<td>2.11</td>
<td>11.71</td>
<td>0.36</td>
<td>0.58</td>
<td>2.24</td>
<td>28.87</td>
<td>3.99</td>
<td>3.23</td>
<td>18.24</td>
<td>Muy bajo</td>
</tr>
</tbody>
</table>

CUADRO 82 Índice de marginación a nivel de localidad 2010

<table>
<thead>
<tr>
<th>Localidad</th>
<th>Población total</th>
<th>Viviendas partículas habitadas</th>
<th>Porcentaje de población de 15 años o más analfabeta</th>
<th>Porcentaje de viviendas partículas sin drenaje ni excusado</th>
<th>Porcentaje de viviendas partículas sin energía eléctrica</th>
<th>Porcentaje de viviendas partículas sin piso de tierra</th>
<th>Promedio de ocupantes por cuarto en viviendas partículas habitadas</th>
<th>Promedio de ocupantes por cuarto en viviendas partículas habitadas sin agua entubada</th>
<th>Porcentaje de viviendas partículas sin piso de tierra</th>
<th>Índice de marginación escala 0 a 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tecate</td>
<td>64,764</td>
<td>17391</td>
<td>2.2</td>
<td>3.1</td>
<td>1.4</td>
<td>6.3</td>
<td>0.9</td>
<td>3.1</td>
<td>7.6</td>
<td>Muy bajo</td>
</tr>
<tr>
<td>Ejido Jacumé</td>
<td>290</td>
<td>77</td>
<td>2.6</td>
<td>18.2</td>
<td>2.9</td>
<td>29.0</td>
<td>1.0</td>
<td>1.4</td>
<td>14.3</td>
<td>Medio</td>
</tr>
<tr>
<td>Paso del Águila</td>
<td>252</td>
<td>82</td>
<td>4.5</td>
<td>17.1</td>
<td>4.9</td>
<td>98.8</td>
<td>1.1</td>
<td>9.8</td>
<td>9.8</td>
<td>Alto</td>
</tr>
<tr>
<td>Rancho Ramos</td>
<td>130</td>
<td>37</td>
<td>5.3</td>
<td>8.1</td>
<td>0.0</td>
<td>0.0</td>
<td>1.4</td>
<td>0.0</td>
<td>21.6</td>
<td>Medio</td>
</tr>
<tr>
<td>La Rumorosa</td>
<td>1,836</td>
<td>561</td>
<td>4.2</td>
<td>7.0</td>
<td>2.8</td>
<td>35.1</td>
<td>0.9</td>
<td>2.2</td>
<td>14.8</td>
<td>Bajo</td>
</tr>
<tr>
<td>El Testerao</td>
<td>446</td>
<td>119</td>
<td>5.8</td>
<td>6.7</td>
<td>4.2</td>
<td>0.0</td>
<td>1.1</td>
<td>3.4</td>
<td>7.6</td>
<td>Bajo</td>
</tr>
<tr>
<td>Valle de las Palmas</td>
<td>1,860</td>
<td>508</td>
<td>4.6</td>
<td>6.5</td>
<td>1.4</td>
<td>1.2</td>
<td>1.0</td>
<td>2.3</td>
<td>11.6</td>
<td>Bajo</td>
</tr>
<tr>
<td>Mi Ranchito (Chula Vista)</td>
<td>494</td>
<td>129</td>
<td>5.6</td>
<td>3.1</td>
<td>1.6</td>
<td>10.9</td>
<td>1.0</td>
<td>3.1</td>
<td>9.3</td>
<td>Bajo</td>
</tr>
<tr>
<td>Jardines del Rincón</td>
<td>220</td>
<td>74</td>
<td>3.7</td>
<td>2.7</td>
<td>8.2</td>
<td>89.0</td>
<td>0.9</td>
<td>13.9</td>
<td>17.6</td>
<td>Alto</td>
</tr>
<tr>
<td>Luis Echeverría Álvarez (El Hongo)</td>
<td>2,411</td>
<td>713</td>
<td>2.7</td>
<td>6.3</td>
<td>2.6</td>
<td>43.4</td>
<td>1.0</td>
<td>3.0</td>
<td>15.0</td>
<td>Medio</td>
</tr>
<tr>
<td>Hacienda Santa Verónica</td>
<td>121</td>
<td>35</td>
<td>7.7</td>
<td>2.9</td>
<td>14.7</td>
<td>73.5</td>
<td>1.4</td>
<td>8.8</td>
<td>31.4</td>
<td>Alto</td>
</tr>
<tr>
<td>Nueva Colonia Hindú</td>
<td>4,431</td>
<td>1097</td>
<td>5.2</td>
<td>5.7</td>
<td>5.6</td>
<td>63.1</td>
<td>1.1</td>
<td>5.6</td>
<td>15.5</td>
<td>Medio</td>
</tr>
<tr>
<td>Rancho Sandoval (San José)</td>
<td>175</td>
<td>50</td>
<td>3.3</td>
<td>0.0</td>
<td>2.0</td>
<td>6.0</td>
<td>0.9</td>
<td>6.0</td>
<td>4.0</td>
<td>Muy bajo</td>
</tr>
<tr>
<td>San José</td>
<td>348</td>
<td>84</td>
<td>4.1</td>
<td>10.7</td>
<td>13.9</td>
<td>47.4</td>
<td>1.6</td>
<td>10.3</td>
<td>27.4</td>
<td>Alto</td>
</tr>
<tr>
<td>Villas Campestre</td>
<td>168</td>
<td>44</td>
<td>2.5</td>
<td>2.3</td>
<td>15.9</td>
<td>100.0</td>
<td>0.9</td>
<td>6.8</td>
<td>34.1</td>
<td>Alto</td>
</tr>
<tr>
<td>Ejido Encinal</td>
<td>258</td>
<td>71</td>
<td>6.8</td>
<td>9.9</td>
<td>9.1</td>
<td>78.5</td>
<td>1.3</td>
<td>6.1</td>
<td>31.0</td>
<td>Alto</td>
</tr>
<tr>
<td>General Felipe Ángeles</td>
<td>273</td>
<td>77</td>
<td>3.8</td>
<td>9.1</td>
<td>8.3</td>
<td>23.6</td>
<td>1.0</td>
<td>4.2</td>
<td>16.9</td>
<td>Medio</td>
</tr>
<tr>
<td>Juliana [Granja]</td>
<td>110</td>
<td>27</td>
<td>0.0</td>
<td>3.7</td>
<td>19.2</td>
<td>30.8</td>
<td>1.0</td>
<td>3.8</td>
<td>22.2</td>
<td>Bajo</td>
</tr>
<tr>
<td>Maclavio Herrera (Colonia Aviación)</td>
<td>1,219</td>
<td>330</td>
<td>3.9</td>
<td>5.2</td>
<td>3.7</td>
<td>20.7</td>
<td>1.0</td>
<td>1.8</td>
<td>10.0</td>
<td>Bajo</td>
</tr>
<tr>
<td>Alfonso Garzón [Granjas Familiares]</td>
<td>1,188</td>
<td>296</td>
<td>2.8</td>
<td>10.5</td>
<td>4.1</td>
<td>36.9</td>
<td>1.2</td>
<td>3.8</td>
<td>9.5</td>
<td>Bajo</td>
</tr>
<tr>
<td>Lomita del Cuchumá</td>
<td>302</td>
<td>78</td>
<td>1.1</td>
<td>7.7</td>
<td>1.4</td>
<td>9.7</td>
<td>0.8</td>
<td>2.8</td>
<td>10.3</td>
<td>Muy bajo</td>
</tr>
<tr>
<td>Ampliación Valle de las Palmas</td>
<td>281</td>
<td>70</td>
<td>6.2</td>
<td>1.4</td>
<td>1.4</td>
<td>7.2</td>
<td>1.2</td>
<td>1.4</td>
<td>7.1</td>
<td>Bajo</td>
</tr>
<tr>
<td>Cereso del Hongo</td>
<td>4,278</td>
<td>1</td>
<td>0.1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>Bajo</td>
</tr>
<tr>
<td>Localidad</td>
<td>Población total</td>
<td>Viviendas participadas</td>
<td>Porcentaje de población de 15 años o más analfabeta</td>
<td>Porcentaje de viviendas participadas sin exclusión</td>
<td>Porcentaje de viviendas participadas sin energía eléctrica</td>
<td>Porcentaje de viviendas participadas sin agua entubada</td>
<td>Promedio de ocupantes por cuarto en viviendas participadas sin energía eléctrica</td>
<td>Porcentaje de viviendas participadas con piso de tierra</td>
<td>Porcentaje de viviendas participadas sin refrigerador</td>
<td>Grado de marginación 2010</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------------</td>
<td>-----------------------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Tijuana</td>
<td>1300983</td>
<td>349541</td>
<td>2.1</td>
<td>1.5</td>
<td>0.5</td>
<td>2.5</td>
<td>0.9</td>
<td>3.7</td>
<td>7.2</td>
<td>Muy bajo</td>
</tr>
<tr>
<td>Casa Blanca (Familia Lizloa)</td>
<td>466</td>
<td>117</td>
<td>7.8</td>
<td>2.6</td>
<td>0.0</td>
<td>46.5</td>
<td>1.4</td>
<td>11.4</td>
<td>27.4</td>
<td>Alto</td>
</tr>
<tr>
<td>La Joya</td>
<td>26860</td>
<td>6745</td>
<td>2.8</td>
<td>2.2</td>
<td>3.5</td>
<td>13.0</td>
<td>1.1</td>
<td>4.7</td>
<td>10.7</td>
<td>Bajo</td>
</tr>
<tr>
<td>Santa Fe</td>
<td>113</td>
<td>30</td>
<td>2.8</td>
<td>10.0</td>
<td>90.0</td>
<td>100.0</td>
<td>1.8</td>
<td>53.3</td>
<td>93.3</td>
<td>Muy alto</td>
</tr>
<tr>
<td>San Luis</td>
<td>8571</td>
<td>2096</td>
<td>5.0</td>
<td>3.8</td>
<td>1.5</td>
<td>11.3</td>
<td>1.3</td>
<td>12.3</td>
<td>11.6</td>
<td>Medio</td>
</tr>
<tr>
<td>El Roble Tres R</td>
<td>200</td>
<td>50</td>
<td>5.7</td>
<td>8.0</td>
<td>0.0</td>
<td>98.0</td>
<td>1.4</td>
<td>8.0</td>
<td>14.0</td>
<td>Alto</td>
</tr>
<tr>
<td>Las Delicias</td>
<td>15486</td>
<td>4897</td>
<td>1.2</td>
<td>0.8</td>
<td>0.1</td>
<td>0.0</td>
<td>1.1</td>
<td>3.2</td>
<td>8.6</td>
<td>Muy bajo</td>
</tr>
<tr>
<td>Baja Malibú (Campo Turístico)</td>
<td>312</td>
<td>107</td>
<td>0.9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
<td>0.9</td>
<td>Muy bajo</td>
</tr>
<tr>
<td>San Antonio del Mar</td>
<td>400</td>
<td>156</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>2.6</td>
<td>1.3</td>
<td>Muy bajo</td>
</tr>
<tr>
<td>El Chicote</td>
<td>171</td>
<td>43</td>
<td>6.0</td>
<td>9.3</td>
<td>2.3</td>
<td>100.0</td>
<td>1.4</td>
<td>16.3</td>
<td>44.2</td>
<td>Alto</td>
</tr>
<tr>
<td>Real del Mar</td>
<td>397</td>
<td>126</td>
<td>0.7</td>
<td>4.0</td>
<td>0.8</td>
<td>0.8</td>
<td>0.6</td>
<td>0.0</td>
<td>5.6</td>
<td>Muy bajo</td>
</tr>
<tr>
<td>La Esperanza [Granjas Familiares]</td>
<td>1173</td>
<td>272</td>
<td>4.3</td>
<td>2.9</td>
<td>2.2</td>
<td>16.6</td>
<td>1.3</td>
<td>6.3</td>
<td>13.2</td>
<td>Medio</td>
</tr>
<tr>
<td>Ejido Ojo de Agua</td>
<td>1241</td>
<td>327</td>
<td>2.3</td>
<td>1.8</td>
<td>0.9</td>
<td>16.9</td>
<td>1.1</td>
<td>2.5</td>
<td>9.2</td>
<td>Bajo</td>
</tr>
<tr>
<td>Maclovio Rojas</td>
<td>7279</td>
<td>1793</td>
<td>4.5</td>
<td>3.1</td>
<td>2.4</td>
<td>13.2</td>
<td>1.3</td>
<td>9.6</td>
<td>37.3</td>
<td>Medio</td>
</tr>
<tr>
<td>Buenos Aires</td>
<td>1761</td>
<td>447</td>
<td>2.5</td>
<td>2.5</td>
<td>2.0</td>
<td>24.5</td>
<td>1.2</td>
<td>12.8</td>
<td>15.7</td>
<td>Medio</td>
</tr>
<tr>
<td>Hacienda los Venados</td>
<td>2096</td>
<td>639</td>
<td>0.5</td>
<td>0.0</td>
<td>0.2</td>
<td>0.2</td>
<td>1.1</td>
<td>0.5</td>
<td>3.9</td>
<td>Muy bajo</td>
</tr>
<tr>
<td>Xicotencatl Dos</td>
<td>490</td>
<td>127</td>
<td>4.4</td>
<td>4.7</td>
<td>3.2</td>
<td>96.0</td>
<td>1.4</td>
<td>11.2</td>
<td>20.5</td>
<td>Alto</td>
</tr>
<tr>
<td>Terrazas del Valle</td>
<td>20421</td>
<td>4815</td>
<td>4.0</td>
<td>2.3</td>
<td>1.0</td>
<td>5.7</td>
<td>1.4</td>
<td>14.0</td>
<td>11.8</td>
<td>Medio</td>
</tr>
<tr>
<td>Valle Bonito</td>
<td>595</td>
<td>167</td>
<td>2.5</td>
<td>2.4</td>
<td>6.0</td>
<td>92.8</td>
<td>1.1</td>
<td>12.6</td>
<td>23.4</td>
<td>Alto</td>
</tr>
<tr>
<td>Nuevo Progreso</td>
<td>821</td>
<td>226</td>
<td>1.6</td>
<td>0.0</td>
<td>0.4</td>
<td>2.7</td>
<td>1.5</td>
<td>1.8</td>
<td>12.4</td>
<td>Bajo</td>
</tr>
<tr>
<td>El Florido Viejo</td>
<td>211</td>
<td>61</td>
<td>5.3</td>
<td>0.0</td>
<td>0.0</td>
<td>93.4</td>
<td>1.0</td>
<td>4.9</td>
<td>6.6</td>
<td>Medio</td>
</tr>
<tr>
<td>Familia González Aguirre</td>
<td>119</td>
<td>33</td>
<td>4.7</td>
<td>9.1</td>
<td>0.0</td>
<td>76.7</td>
<td>1.1</td>
<td>3.3</td>
<td>9.1</td>
<td>Medio</td>
</tr>
<tr>
<td>Terrazas del Sol</td>
<td>254</td>
<td>64</td>
<td>2.3</td>
<td>14.1</td>
<td>9.5</td>
<td>22.6</td>
<td>1.3</td>
<td>7.9</td>
<td>32.8</td>
<td>Medio</td>
</tr>
<tr>
<td>Cuesta Blanca</td>
<td>1591</td>
<td>476</td>
<td>0.4</td>
<td>1.9</td>
<td>0.2</td>
<td>3.4</td>
<td>0.8</td>
<td>1.9</td>
<td>2.1</td>
<td>Muy bajo</td>
</tr>
<tr>
<td>Francisco Zarco</td>
<td>656</td>
<td>151</td>
<td>4.9</td>
<td>21.2</td>
<td>0.7</td>
<td>53.4</td>
<td>1.2</td>
<td>3.4</td>
<td>9.9</td>
<td>Medio</td>
</tr>
<tr>
<td>San Antonio</td>
<td>1241</td>
<td>305</td>
<td>6.7</td>
<td>8.2</td>
<td>4.5</td>
<td>25.4</td>
<td>1.3</td>
<td>5.1</td>
<td>22.6</td>
<td>Medio</td>
</tr>
<tr>
<td>Lomas del Mar</td>
<td>649</td>
<td>170</td>
<td>2.0</td>
<td>1.2</td>
<td>0.0</td>
<td>8.4</td>
<td>1.0</td>
<td>1.2</td>
<td>0.6</td>
<td>Muy bajo</td>
</tr>
<tr>
<td>Parajes del Valle</td>
<td>3595</td>
<td>1127</td>
<td>1.5</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
<td>1.5</td>
<td>0.7</td>
<td>10.2</td>
<td>Bajo</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Localidad</th>
<th>Código</th>
</tr>
</thead>
<tbody>
<tr>
<td>36400 Tres M (Pérez)</td>
<td>4918</td>
<td>237</td>
<td>5.4</td>
<td>22.4</td>
<td>16.2</td>
<td>100.0</td>
<td>1.7</td>
<td>53.0</td>
<td>67.1</td>
<td>Alto</td>
</tr>
<tr>
<td>Tres M (Pérez)</td>
<td>36400</td>
<td>10146</td>
<td>0.7</td>
<td>0.3</td>
<td>0.1</td>
<td>0.2</td>
<td>1.1</td>
<td>1.6</td>
<td>3.4</td>
<td>Muy bajo</td>
</tr>
<tr>
<td>Cañada Verde</td>
<td>197</td>
<td>53</td>
<td>3.9</td>
<td>7.5</td>
<td>2.0</td>
<td>18.4</td>
<td>1.1</td>
<td>2.0</td>
<td>17.0</td>
<td>Medio</td>
</tr>
<tr>
<td>El Nevado</td>
<td>269</td>
<td>41</td>
<td>13.7</td>
<td>17.1</td>
<td>46.3</td>
<td>97.6</td>
<td>1.7</td>
<td>7.3</td>
<td>61.0</td>
<td>Alto</td>
</tr>
<tr>
<td>El Niño</td>
<td>8999</td>
<td>2191</td>
<td>3.5</td>
<td>4.0</td>
<td>1.0</td>
<td>2.2</td>
<td>1.4</td>
<td>5.0</td>
<td>12.0</td>
<td>Bajo</td>
</tr>
<tr>
<td>La Esperanza [Vivero]</td>
<td>447</td>
<td>119</td>
<td>2.9</td>
<td>0.8</td>
<td>2.5</td>
<td>96.6</td>
<td>1.3</td>
<td>10.9</td>
<td>27.7</td>
<td>Alto</td>
</tr>
<tr>
<td>Genaro Vázquez Sección Tres</td>
<td>535</td>
<td>132</td>
<td>3.5</td>
<td>3.0</td>
<td>0.8</td>
<td>6.1</td>
<td>1.3</td>
<td>12.1</td>
<td>11.4</td>
<td>Bajo</td>
</tr>
<tr>
<td>Pórticos de San Antonio</td>
<td>34234</td>
<td>9894</td>
<td>0.5</td>
<td>0.2</td>
<td>0.0</td>
<td>0.1</td>
<td>0.9</td>
<td>0.6</td>
<td>2.1</td>
<td>Muy bajo</td>
</tr>
<tr>
<td>Ejido Javier Rojo Gómez</td>
<td>2408</td>
<td>578</td>
<td>4.1</td>
<td>1.6</td>
<td>0.7</td>
<td>38.8</td>
<td>1.4</td>
<td>9.5</td>
<td>12.1</td>
<td>Medio</td>
</tr>
<tr>
<td>Lomas del Niño</td>
<td>3552</td>
<td>787</td>
<td>2.8</td>
<td>2.2</td>
<td>0.4</td>
<td>2.4</td>
<td>1.4</td>
<td>7.7</td>
<td>14.4</td>
<td>Bajo</td>
</tr>
<tr>
<td>Lomas del Pedregal</td>
<td>1086</td>
<td>268</td>
<td>5.4</td>
<td>2.2</td>
<td>0.9</td>
<td>82.8</td>
<td>1.4</td>
<td>12.7</td>
<td>36.6</td>
<td>Alto</td>
</tr>
<tr>
<td>Colinas del Florido</td>
<td>1145</td>
<td>255</td>
<td>2.9</td>
<td>5.9</td>
<td>1.2</td>
<td>7.2</td>
<td>1.3</td>
<td>8.0</td>
<td>7.8</td>
<td>Bajo</td>
</tr>
<tr>
<td>Hacienda las Flores</td>
<td>197</td>
<td>53</td>
<td>3.9</td>
<td>7.5</td>
<td>2.0</td>
<td>18.4</td>
<td>1.1</td>
<td>2.0</td>
<td>17.0</td>
<td>Medio</td>
</tr>
<tr>
<td>El Niño</td>
<td>8999</td>
<td>2191</td>
<td>3.5</td>
<td>4.0</td>
<td>1.0</td>
<td>2.2</td>
<td>1.4</td>
<td>5.0</td>
<td>12.0</td>
<td>Bajo</td>
</tr>
<tr>
<td>Lomas del Valle</td>
<td>3552</td>
<td>787</td>
<td>2.8</td>
<td>2.2</td>
<td>0.4</td>
<td>2.4</td>
<td>1.4</td>
<td>7.7</td>
<td>14.4</td>
<td>Bajo</td>
</tr>
<tr>
<td>Colinas del Florido</td>
<td>1145</td>
<td>255</td>
<td>2.9</td>
<td>5.9</td>
<td>1.2</td>
<td>7.2</td>
<td>1.3</td>
<td>8.0</td>
<td>7.8</td>
<td>Bajo</td>
</tr>
<tr>
<td>El Refugio</td>
<td>36400</td>
<td>10146</td>
<td>0.7</td>
<td>0.3</td>
<td>0.1</td>
<td>0.2</td>
<td>1.1</td>
<td>1.6</td>
<td>3.4</td>
<td>Muy bajo</td>
</tr>
<tr>
<td>Cañada Verde</td>
<td>197</td>
<td>53</td>
<td>3.9</td>
<td>7.5</td>
<td>2.0</td>
<td>18.4</td>
<td>1.1</td>
<td>2.0</td>
<td>17.0</td>
<td>Medio</td>
</tr>
<tr>
<td>El Nevado</td>
<td>269</td>
<td>41</td>
<td>13.7</td>
<td>17.1</td>
<td>46.3</td>
<td>97.6</td>
<td>1.7</td>
<td>7.3</td>
<td>61.0</td>
<td>Alto</td>
</tr>
<tr>
<td>El Niño</td>
<td>8999</td>
<td>2191</td>
<td>3.5</td>
<td>4.0</td>
<td>1.0</td>
<td>2.2</td>
<td>1.4</td>
<td>5.0</td>
<td>12.0</td>
<td>Bajo</td>
</tr>
<tr>
<td>Lomas del Valle</td>
<td>3552</td>
<td>787</td>
<td>2.8</td>
<td>2.2</td>
<td>0.4</td>
<td>2.4</td>
<td>1.4</td>
<td>7.7</td>
<td>14.4</td>
<td>Bajo</td>
</tr>
<tr>
<td>Colinas del Florido</td>
<td>1145</td>
<td>255</td>
<td>2.9</td>
<td>5.9</td>
<td>1.2</td>
<td>7.2</td>
<td>1.3</td>
<td>8.0</td>
<td>7.8</td>
<td>Bajo</td>
</tr>
<tr>
<td>El Refugio</td>
<td>36400</td>
<td>10146</td>
<td>0.7</td>
<td>0.3</td>
<td>0.1</td>
<td>0.2</td>
<td>1.1</td>
<td>1.6</td>
<td>3.4</td>
<td>Muy bajo</td>
</tr>
<tr>
<td>Cañada Verde</td>
<td>197</td>
<td>53</td>
<td>3.9</td>
<td>7.5</td>
<td>2.0</td>
<td>18.4</td>
<td>1.1</td>
<td>2.0</td>
<td>17.0</td>
<td>Medio</td>
</tr>
<tr>
<td>El Nevado</td>
<td>269</td>
<td>41</td>
<td>13.7</td>
<td>17.1</td>
<td>46.3</td>
<td>97.6</td>
<td>1.7</td>
<td>7.3</td>
<td>61.0</td>
<td>Alto</td>
</tr>
<tr>
<td>El Niño</td>
<td>8999</td>
<td>2191</td>
<td>3.5</td>
<td>4.0</td>
<td>1.0</td>
<td>2.2</td>
<td>1.4</td>
<td>5.0</td>
<td>12.0</td>
<td>Bajo</td>
</tr>
<tr>
<td>Lomas del Valle</td>
<td>3552</td>
<td>787</td>
<td>2.8</td>
<td>2.2</td>
<td>0.4</td>
<td>2.4</td>
<td>1.4</td>
<td>7.7</td>
<td>14.4</td>
<td>Bajo</td>
</tr>
<tr>
<td>Colinas del Florido</td>
<td>1145</td>
<td>255</td>
<td>2.9</td>
<td>5.9</td>
<td>1.2</td>
<td>7.2</td>
<td>1.3</td>
<td>8.0</td>
<td>7.8</td>
<td>Bajo</td>
</tr>
<tr>
<td>El Refugio</td>
<td>36400</td>
<td>10146</td>
<td>0.7</td>
<td>0.3</td>
<td>0.1</td>
<td>0.2</td>
<td>1.1</td>
<td>1.6</td>
<td>3.4</td>
<td>Muy bajo</td>
</tr>
<tr>
<td>Cañada Verde</td>
<td>197</td>
<td>53</td>
<td>3.9</td>
<td>7.5</td>
<td>2.0</td>
<td>18.4</td>
<td>1.1</td>
<td>2.0</td>
<td>17.0</td>
<td>Medio</td>
</tr>
<tr>
<td>El Nevado</td>
<td>269</td>
<td>41</td>
<td>13.7</td>
<td>17.1</td>
<td>46.3</td>
<td>97.6</td>
<td>1.7</td>
<td>7.3</td>
<td>61.0</td>
<td>Alto</td>
</tr>
<tr>
<td>El Niño</td>
<td>8999</td>
<td>2191</td>
<td>3.5</td>
<td>4.0</td>
<td>1.0</td>
<td>2.2</td>
<td>1.4</td>
<td>5.0</td>
<td>12.0</td>
<td>Bajo</td>
</tr>
<tr>
<td>Lomas del Valle</td>
<td>3552</td>
<td>787</td>
<td>2.8</td>
<td>2.2</td>
<td>0.4</td>
<td>2.4</td>
<td>1.4</td>
<td>7.7</td>
<td>14.4</td>
<td>Bajo</td>
</tr>
<tr>
<td>Colinas del Florido</td>
<td>1145</td>
<td>255</td>
<td>2.9</td>
<td>5.9</td>
<td>1.2</td>
<td>7.2</td>
<td>1.3</td>
<td>8.0</td>
<td>7.8</td>
<td>Bajo</td>
</tr>
<tr>
<td>El Refugio</td>
<td>36400</td>
<td>10146</td>
<td>0.7</td>
<td>0.3</td>
<td>0.1</td>
<td>0.2</td>
<td>1.1</td>
<td>1.6</td>
<td>3.4</td>
<td>Muy bajo</td>
</tr>
<tr>
<td>Cañada Verde</td>
<td>197</td>
<td>53</td>
<td>3.9</td>
<td>7.5</td>
<td>2.0</td>
<td>18.4</td>
<td>1.1</td>
<td>2.0</td>
<td>17.0</td>
<td>Medio</td>
</tr>
<tr>
<td>El Nevado</td>
<td>269</td>
<td>41</td>
<td>13.7</td>
<td>17.1</td>
<td>46.3</td>
<td>97.6</td>
<td>1.7</td>
<td>7.3</td>
<td>61.0</td>
<td>Alto</td>
</tr>
<tr>
<td>El Niño</td>
<td>8999</td>
<td>2191</td>
<td>3.5</td>
<td>4.0</td>
<td>1.0</td>
<td>2.2</td>
<td>1.4</td>
<td>5.0</td>
<td>12.0</td>
<td>Bajo</td>
</tr>
<tr>
<td>Lomas del Valle</td>
<td>3552</td>
<td>787</td>
<td>2.8</td>
<td>2.2</td>
<td>0.4</td>
<td>2.4</td>
<td>1.4</td>
<td>7.7</td>
<td>14.4</td>
<td>Bajo</td>
</tr>
<tr>
<td>Colinas del Florido</td>
<td>1145</td>
<td>255</td>
<td>2.9</td>
<td>5.9</td>
<td>1.2</td>
<td>7.2</td>
<td>1.3</td>
<td>8.0</td>
<td>7.8</td>
<td>Bajo</td>
</tr>
</tbody>
</table>

El municipio de Tecate cuenta con 149 localidades en su territorio, de las cuales, el 50% (74 localidades) presentan un alto grado de marginación; el 15% (22 localidades) tienen un grado bajo de marginación; un 21% (32 localidades) con grado medio; el 11% (17 localidades) un grado muy bajo y por debajo un 3% (4 localidades) con un grado muy alto de marginación. Esta composición cambia si se considera el número de habitantes y su relación con los grados de marginación, Tecate contó con 99,908 habitantes en 2010, de los cuales el 3.7% (3,692 habitantes) se mantienen con un grado alto de marginación; el 12.6% (12,583 habitantes) presentan un grado bajo de marginación; un 9.3% (9,308 habitantes) con grado medio; la mayor parte de la población en Tecate, el 74.2% (74,203 habitantes) con muy bajo grado de marginación, y finalmente el 0.2% (122 habitantes) registraron un muy alto grado de marginación.

Por su parte, el municipio de Tijuana contó en 2010 con 230 localidades, de las cuales el 40% (91 localidades) se situó en un grado alto de marginación; el 17% (38 localidades) registró un bajo grado de marginación; el 18% (42 localidades) con grado medio; con apenas el 3% (8 localidades) con un alto grado de marginación; finalmente el 22% de las localidades (51) se consideraron como muy bajo grado de marginación. De nueva cuenta los porcentajes cambian si se considera el número de habitantes y sus grados de marginación, de esta forma, la población total fue de 1,558,201 habitantes en 2010, con un 0.86% (13,264 habitantes) en grado alto de marginación; 4.78% (74,449 habitantes) con un grado bajo de marginación; 2.98% (46,570 habitantes) en grado medio; con un grado muy bajo de marginación se ubicó el 91.36% (1,423,527 habitantes) y tan solo el 0.02% de la población (400 habitantes) presentaron un grado muy alto de marginación.

En este sentido, tanto en el municipio de Tecate como en el de Tijuana, las localidades con un muy alto grado de marginación se ubican en las partes más lejanas de los principales centros de población y, para el caso de las localidades con alto grado de marginación, se ubican en las periferias de las ciudades, especialmente en el caso de Tijuana.
2.13 Restricciones económicas

Juan Manuel Rodríguez Esteves

Tijuana y Tecate, Baja California

El financiamiento para implementar los planes y programas en materia de recursos hídricos en México provienen de dos fuentes principales: las aportaciones de los presupuestos públicos (federal, estatal y municipales) y por otro lado las aportaciones de los propios usuarios del agua (SEMARNAT, 2012).

La forma en que tradicionalmente se ha venido realizando la administración del agua en México ha sido que el financiamiento de los costos del agua se concentre principalmente en los presupuestos públicos, y en menor medida a las aportaciones de los usuarios del agua, siendo la CONAGUA la entidad del gobierno que invierte directamente en el tema del agua, y en menor medida algunas otras instituciones como SAGARPA y SEDESOL (SEMARNAT, 2012). Por su parte, a partir del 2012 en México se puede invertir recursos bajo el esquema de Asociaciones Público Privadas (APP), que son esquemas de inversión de largo plazo, que tienen por objeto la prestación de servicios al sector público con base en el desarrollo de infraestructura que construye y opera el sector privado.

En el nivel federal la Conagua aplica su presupuesto de inversión de dos maneras diferentes: directamente, construyendo infraestructura hidráulica e indirectamente, a partir de programas federalizados en los que aporta sólo un porcentaje de los costos totales, con la intención de inducir la participación de los propios usuarios y de los estados y municipios a aportar recursos. Así por ejemplo, para cumplir con las acciones contempladas en la Agenda del Agua en la Región Hidrológico-Administrativa I Península de Baja California entre 2012 y 2030 se deben ejercer 36,866 millones de pesos (pesos al 2009), es decir, cerca de 1,843 millones de pesos en promedio anual (SEMARNAT, 2012). El CUADRO 84 muestra el presupuesto estimado de inversión y gasto corriente de la Región Hidrológico-Administrativa I. Península de Baja California al 2030.

<table>
<thead>
<tr>
<th>Acciones Agenda del Agua 2030</th>
<th>Costos acumulados al final del periodo (millones de pesos al 2009)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2012</td>
</tr>
<tr>
<td>Cuencas y acuíferos en equilibrio</td>
<td>774</td>
</tr>
<tr>
<td>Ríos limpios</td>
<td>203</td>
</tr>
<tr>
<td>Cobertura universal</td>
<td>1,890</td>
</tr>
<tr>
<td>Asentamientos seguros frente a inundaciones catastróficas</td>
<td>235</td>
</tr>
<tr>
<td>Total</td>
<td>3,102</td>
</tr>
</tbody>
</table>

De esta forma, son dos los ejes en los cuales se centra la inversión en infraestructura hidráulica, cuencas y acuíferos en equilibrio y en la cobertura universal, demostrando con ello que son dos temas de prioridad del sector hídrico nacional. Por lo tanto, se da mayor importancia a proveer agua de calidad para cada tipo de usuarios y se amplía el servicio de agua a aquellos sectores que lo requieren.

Por lo que respecta al sector o tipo de medida en lo particular donde se realizaría teóricamente las inversiones para garantizar el abasto y saneamiento del agua, el CUADRO 85 presenta el desglose de estas inversiones.

CUADRO 85 Inversiones por sector o tipo de medida

<table>
<thead>
<tr>
<th>Eje rector</th>
<th>Sector o tipo de medida</th>
<th>Inversión al 2030 (millones de pesos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cuencas en equilibrio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agrícola</td>
<td></td>
<td>4,744.5</td>
</tr>
<tr>
<td>Municipal</td>
<td></td>
<td>6,729.0</td>
</tr>
<tr>
<td>Industrial</td>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td>Oferta</td>
<td></td>
<td>4,005.5</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>15,479.8</td>
</tr>
<tr>
<td>Ríos limpios</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infraestructura adicional municipal</td>
<td></td>
<td>329.4</td>
</tr>
<tr>
<td>Expansión y/o conexión de drenaje municipal</td>
<td></td>
<td>1,295.2</td>
</tr>
<tr>
<td>Operación eficiente de la infraestructura municipal</td>
<td></td>
<td>411.9</td>
</tr>
<tr>
<td>Infraestructura adicional y operación eficiente de la infraestructura industrial</td>
<td></td>
<td>500.8</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>2,537.3</td>
</tr>
<tr>
<td>Cobertura universal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agua potable urbana</td>
<td></td>
<td>9,557.0</td>
</tr>
<tr>
<td>Agua potable rural</td>
<td></td>
<td>684.9</td>
</tr>
<tr>
<td>Alcantarillado urbano</td>
<td></td>
<td>5,435.9</td>
</tr>
<tr>
<td>Alcantarillado rural</td>
<td></td>
<td>816.6</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>16,494.4</td>
</tr>
<tr>
<td>Asentamientos seguros frente a inundaciones catastróficas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infraestructura urbana</td>
<td></td>
<td>2,354.6</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>2,354.6</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>36,866.1</td>
</tr>
</tbody>
</table>

El sector de agua potable urbana así como el alcantarillado urbano son dos de los rubros que mayor inversión requerirá la Región Hidrológico-Administrativa I. Península de Baja California, de igual manera, el agua de uso municipal sería otro de los sectores que requerirá de una mayor atención para alcanzar el uso y aprovechamiento del agua en la región.

Sin embargo, para alcanzar los objetivos de la agenda del agua para los próximos años, es decir, al 2030, se requiere realizar grandes cambios, lo cual representa contar en todas las cuencas cuenten con una estructura de gobierno sólida, con la suficiente capacidad para gestionar los recursos hídricos de forma corresponsable y sustentable, y asegurar una mejor y más equilibrada distribución de las competencias de fomento, regulación y prestación de los servicios del agua y su saneamiento, con responsabilidades en los tres órdenes de gobierno (Semarnat, 2012).
En el nivel estatal, el objetivo del Programa Hídrico de Baja California (2030) es “contar con un instrumento de planeación y programación que establezca la ruta para lograr la seguridad y sustentabilidad hídrica en el estado de Baja California, en armonía con los planes y programas sectoriales de la federación y del estado” (Ceabc, 2016).

A partir del 2008 en Baja California, se vienen realzando importantes inversiones en el manejo de los recursos hídricos de la región, principalmente aquellos provenientes del Río Colorado como los provenientes de los acuíferos del Valle de Mexicali y Zona Costera de Baja California. El CUADRO 86 presenta las inversiones programas en materia de uso y disposición del agua en Baja California.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensenada</td>
<td>84</td>
<td>245</td>
<td>270</td>
<td>365</td>
<td>145</td>
<td>100</td>
<td>237</td>
<td>411</td>
<td>169</td>
<td>15</td>
<td>22</td>
<td>85</td>
<td>2,148</td>
</tr>
<tr>
<td>Mexicali</td>
<td>207</td>
<td>422</td>
<td>453</td>
<td>463</td>
<td>492</td>
<td>243</td>
<td>22</td>
<td>668</td>
<td>701</td>
<td>594</td>
<td>313</td>
<td>44</td>
<td>4,622</td>
</tr>
<tr>
<td>Tecate</td>
<td>37</td>
<td>135</td>
<td>141</td>
<td>68</td>
<td>44</td>
<td>57</td>
<td>100</td>
<td>119</td>
<td>98</td>
<td>92</td>
<td>30</td>
<td>53</td>
<td>974</td>
</tr>
<tr>
<td>Tijuana y Playas de Rosarito</td>
<td>592</td>
<td>1,221</td>
<td>1,297</td>
<td>1,097</td>
<td>782</td>
<td>1,282</td>
<td>274</td>
<td>398</td>
<td>259</td>
<td>312</td>
<td>336</td>
<td>262</td>
<td>8,112</td>
</tr>
<tr>
<td>Intermunicipales CEABC</td>
<td>1,125</td>
<td>322</td>
<td>264</td>
<td>350</td>
<td>675</td>
<td>575</td>
<td>57</td>
<td>1,245</td>
<td>1,111</td>
<td>2,995</td>
<td>3,187</td>
<td>1,960</td>
<td>13,866</td>
</tr>
<tr>
<td>Total Baja California</td>
<td>2,045</td>
<td>2,345</td>
<td>2,425</td>
<td>2,343</td>
<td>2,138</td>
<td>2,257</td>
<td>690</td>
<td>2,841</td>
<td>2,339</td>
<td>4,007</td>
<td>3,889</td>
<td>2,504</td>
<td>29,823</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia con datos de CEABC, 2008 y 2014.

Como lo indica el CUADRO 86, son los municipios de Tijuana y Playas de Rosarito (debido a que solo es un organismo operador del agua que atiende estos dos municipios), así como el de Mexicali, los que concentran en mayor volumen de las inversiones desde 2008 hasta el 2019, lo cual se entiende por ser las dos zonas urbanas que concentran más del 70% de la población estatal. De manera importante resultan las inversiones intermunicipales planeadas por la Comisión Estatal del Agua de Baja California, debido a que, como instancia gubernamental estatal, y cabeza del sector en el estado, deberá invertir en obras hidráulicas que sean de beneficio para dos o más municipios, tal es el caso del Acueducto Río Colorado Tijuana, que provee de agua a los municipios de Tecate, Tijuana y Playas de Rosarito.

Un elemento que resalta de la información del CUADRO 86 son los cambios significativos de las inversiones al término o inicio de una administración estatal, en este caso el 2012, esto se debe a la conclusión y/o inicio de una
nueva etapa de administración en el contexto global del estado, donde el sector hídrico juega un papel importante debido a la poca disponibilidad del recurso, por lo que le confiere una categoría estratégico para el desarrollo del estado.

El financiamiento para el sector hídrico, tanto para la región hidrológica como para el estado, en especial para la CRT, resulta complejo debido a su dependencia del sector gubernamental federal y estatal principalmente, las aportaciones o inversiones para ampliar la red de distribución, saneamiento, reúso y disposición del agua obedece a las disposiciones presupuestales de ambos niveles de gobierno, donde la incertidumbre sobre la disponibilidad, o no, de recursos financieros o de inversión, podría comprometer el uso de los recursos hídricos. Por ejemplo, hasta inicios del 2018 la CONAGUA no contaba con los recursos financieros para el saneamiento del cauce del Río Tijuana a su paso por esta ciudad, problema que se manifiesta en la proliferación de vegetación y basura sobre el canal encementado de este río, que trae como consecuencia el arrastre de material sólido a la desembocadura del río en el Océano Pacífico.

A nivel de organismos operadores del agua, tanto para Tijuana (CESPT) como para Tecate (CESPTE), el CUADRO 87 presenta los montos de autorizados por programa al 2016.

CUADRO 87 Monto autorizado por programa según organismo operador del agua (2016)

<table>
<thead>
<tr>
<th>Programa</th>
<th>Autorizado por programa</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Agua potable</td>
<td>Alcantarillado y saneamiento</td>
</tr>
<tr>
<td>Cespt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proagua 2016 (APAUR)</td>
<td>14,489,248</td>
<td>3,000,000</td>
</tr>
<tr>
<td>Proagua (APARURAL)</td>
<td>6,670,000</td>
<td>--</td>
</tr>
<tr>
<td>Proagua (Apartado Agua Limpia)</td>
<td>584,800</td>
<td>--</td>
</tr>
<tr>
<td>Programa Cultural del Agua</td>
<td>--</td>
<td>500,000</td>
</tr>
<tr>
<td>Programa de Devoluciones de Derechos (PRODEBER)</td>
<td>11,154,295</td>
<td>523,627</td>
</tr>
<tr>
<td>Prosan (PROTAR Incentivos)</td>
<td>--</td>
<td>2,436,750</td>
</tr>
<tr>
<td>Prosan (PROTAR Infraestructura)</td>
<td>--</td>
<td>7,065,889</td>
</tr>
<tr>
<td>Programa de Recursos Propios</td>
<td>3,831,128</td>
<td>1,893,520</td>
</tr>
<tr>
<td>Prodi</td>
<td>--</td>
<td>370,000</td>
</tr>
<tr>
<td>Programa de Apoyo a Comunidades (PAC)</td>
<td>651,036</td>
<td>5,170,385</td>
</tr>
<tr>
<td>Fondo Metropolitano</td>
<td>3,329,531</td>
<td>3,790,007</td>
</tr>
<tr>
<td>Total del Organismo</td>
<td>40,710,038</td>
<td>23,880,178</td>
</tr>
<tr>
<td>Total</td>
<td>124,446,282</td>
<td>144,213,607</td>
</tr>
</tbody>
</table>

Nota: las cifras están en pesos corrientes.

Para la CESPT se le autorizaron poco más de 80 millones de pesos en los programa de agua para el ejercicio 2016, mientras que para el de saneamiento fueron más de 120 millones de pesos, lo que significa que es la infraestructura
de saneamiento la que más requiere de mantenimiento y de ampliación. El monto total autorizado para este organismo fue de poco más de 300 millones de pesos, cantidad no muy significativa si se considera el tamaño de población que atiende y la problemática que enfrenta.

Por su parte, la CESPTE recibió un total poco más de 65 millones de pesos para el ejercicio fiscal del 2016, (65,669,206 pesos), destinando 40 millones al tema del agua potable y 23 al de alcantarillado y drenaje, proporción a la inversa si se compara con la CESPT. Un elemento a destacar es el mayor número de programas que atiende el organismo operador, con lo que el presupuesto anual se desagrega en un mayor número de partidas.

San Diego, CA

Para el caso del condado de San Diego, el presupuesto de operación para el año fiscal 2016-2017 fue de 94,142,801 dólares, siendo el área de operaciones y mantenimiento el rubro que se llevó una mayor inversión debido a que es el área operativa del organismo operador local, con poco más de 30 millones de dólares (ver CUADRO 88).

| CUADRO 88 Presupuesto operativo de la Autoridad del Agua de San Diego (2016-2017) |
|--------------------------------------|------------------|
| Departamento | Año fiscal 2016-2017 |
| Administrative Services | 14,421,453 |
| Colorado River Programs | 3,157,568 |
| Engineering | 6,973,809 |
| Finance | 4,716,813 |
| General Counsel | 7,383,008 |
| General Manager & BOD | 5,826,489 |
| MWD Program | 3,996,434 |
| Operations & Maintenance | 31,472,541 |
| Public Outreach & Conservation | 8,554,721 |
| Water Resources | 7,639,965 |
| **Total** | **94,142,801** |

Nota: las cifras están en dólares.

Los montos de operación de los organismos operadores del agua, tanto en México como en Estados Unidos, así como de las autoridades relacionadas con la gestión del agua, deben ser garantizados si se busca un servicio eficiente que cubra las necesidades básicas de todos los usuarios. En un contexto de cambio e incertidumbre en cuanto a la disposición y distribución del gasto público, especialmente en México, representa un desafío en la medida en que son frecuentes los recortes de presupuesto en este sector, con lo que se pone en riesgo la sustentabilidad del recurso a corto y mediano plazo. En este sentido, se debe concientizar a los usuarios del agua que se trata de un recurso finito y escaso, por lo que se deben buscar nuevos mecanismos para el financiamiento de la nueva infraestructura y el mantenimiento de la ya existente.
2.14 INSOSTENIBILIDAD DE LOS ORGANISMOS OPERADORES DE AGUA POTABLE Y SANEAMIENTO

Juan Manuel Rodríguez Esteves

Tijuana, B.C.

La mayor parte del volumen de agua que se utiliza en los principales centros urbanos de la CRT provienen del Acueducto Río Colorado Tijuana ARCT, el cual entró en funcionamiento a principios de la década de 1980 conduciendo su caudal desde el Valle de Mexicali hasta la presa El Carrizo en Tecate, con un recorrido de 126 km y superando elevaciones de 1,100 m en la Sierra de la Rumorosa, también en el municipio de Tecate.

En la década de 1960 y 1970’s el estado de Baja California, y en especial Tijuana, experimentaban altas tasas de crecimiento demográfico, superiores a la media nacional, por lo que los esfuerzos por dotar de agua y saneamiento a la ciudad representaban un desafío, tanto en infraestructura como en la baja disponibilidad de agua en los acuíferos locales. Este fue el contexto por el que se construyó el ARCT.

Con base en la información de los organismos operadores del agua, tanto para el municipio de Tijuana y Tecate, las tarifas por servicios de agua en enero de 2018 fueron los siguientes:

CUADRO 89 Tarifas por consumo de agua en Tijuana Enero de 2018

<table>
<thead>
<tr>
<th>Volumen (m³)</th>
<th>Residencial (costo en pesos)</th>
<th>Volumen (m³)</th>
<th>Comercial (costo en pesos)</th>
<th>Volumen (m³)</th>
<th>Industrial (costo en pesos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5</td>
<td>89.32</td>
<td>0-5</td>
<td>307.34</td>
<td>0-5</td>
<td>307.34</td>
</tr>
<tr>
<td>6-10</td>
<td>18.08</td>
<td>6-30</td>
<td>75.55</td>
<td>6-30</td>
<td>75.55</td>
</tr>
<tr>
<td>11-15</td>
<td>18.48</td>
<td>31-1,000</td>
<td>78.15</td>
<td>31-1,000</td>
<td>78.15</td>
</tr>
<tr>
<td>16-20</td>
<td>21.08</td>
<td>1,001-200,000</td>
<td>79.69</td>
<td>1,001-200,000</td>
<td>79.69</td>
</tr>
<tr>
<td>21-25</td>
<td>35.35</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>26-30</td>
<td>36.54</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>31-35</td>
<td>46.18</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>36-40</td>
<td>46.58</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>41-45</td>
<td>52.66</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>46-50</td>
<td>52.85</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>51-60</td>
<td>61.53</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>61-200,000</td>
<td>61.97</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Nota: De 0 m³ a 5 m³: cargo mínimo por consumo de agua.
De 6 m³ en adelante: cargo adicional por metro cúbico de consumo de agua.
CUADRO 90 Tarifas por consumo de agua en Tecate.

Enero de 2018

<table>
<thead>
<tr>
<th>Volumen (m³)</th>
<th>Residencial (costo en pesos)</th>
<th>Volumen (m³)</th>
<th>Comercial (costo en pesos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5</td>
<td>61.84</td>
<td>0-5</td>
<td>411.10</td>
</tr>
<tr>
<td>6-10</td>
<td>12.21</td>
<td>6-10</td>
<td>36.68</td>
</tr>
<tr>
<td>11-15</td>
<td>12.45</td>
<td>11-15</td>
<td>36.68</td>
</tr>
<tr>
<td>16-20</td>
<td>12.67</td>
<td>16-20</td>
<td>36.68</td>
</tr>
<tr>
<td>21-25</td>
<td>17.04</td>
<td>21-30</td>
<td>36.68</td>
</tr>
<tr>
<td>26-30</td>
<td>24.31</td>
<td>31-40</td>
<td>61.40</td>
</tr>
<tr>
<td>31-40</td>
<td>33.29</td>
<td>41-50</td>
<td>61.40</td>
</tr>
<tr>
<td>41-50</td>
<td>42.88</td>
<td>51-100</td>
<td>61.40</td>
</tr>
<tr>
<td>51-60</td>
<td>47.44</td>
<td>101-1,000</td>
<td>61.40</td>
</tr>
<tr>
<td>61-999,999</td>
<td>50.55</td>
<td>1,001-999,999</td>
<td>65.08</td>
</tr>
</tbody>
</table>

Nota: de 0 a 5 m³ es el monto base, de 6 en adelante es el costo por m³ adicional, sumándolo al monto base por rangos incrementalmente.

Por lo que respecta a San Diego, la tarifa mensual para los consumidores domésticos tiene como cuota base $24.22 dólares. El recibo total a pagar es una combinación de la tarifa básica mensual del medidor y la cantidad de agua utilizada. Para fines de facturación, el Departamento de Servicios Públicos de San Diego mide el agua utilizada por cientos de pies cúbicos (HCF-hundred cubic feet). Los costos se presentan en el CUADRO 91.

CUADRO 91 Tarifa mensual para consumidores domésticos en San Diego, CA

Agosto de 2017

<table>
<thead>
<tr>
<th>Tarifa</th>
<th>Costo (en dólares)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>$24.22</td>
</tr>
<tr>
<td>0 - 4 factura HCF</td>
<td>$4.842 por HCF</td>
</tr>
<tr>
<td>5 - 12 HCF</td>
<td>$5.423 por HCF</td>
</tr>
<tr>
<td>13 - 18 HCF</td>
<td>$7.748 por HCF</td>
</tr>
<tr>
<td>Cada HCF consumido después de los 18 iniciales HCF</td>
<td>$10.895 por HCF</td>
</tr>
</tbody>
</table>

Para los consumidores comerciales e industriales, la factura total es una combinación del metro base mensual (que se basa en el tamaño del medidor) y la cantidad de agua utilizada. Estos clientes pagan $5,718 por HCF. Para calcular la cuota mensual base, según el tamaño del medidor, el CUADRO 92 muestra los costos a pagar.

CUADRO 92 Costo del monto base según tamaño de medidor de agua

<table>
<thead>
<tr>
<th>Tamaño del medidor de agua (en pulgadas)</th>
<th>Cuota base (en dólares)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/8"</td>
<td>$ 24.22</td>
</tr>
<tr>
<td>3/4"</td>
<td>$ 24.22</td>
</tr>
<tr>
<td>1"</td>
<td>$ 32.08</td>
</tr>
<tr>
<td>1.5"</td>
<td>$ 50.05</td>
</tr>
<tr>
<td>2"</td>
<td>$ 72.51</td>
</tr>
<tr>
<td>3"</td>
<td>$ 125.28</td>
</tr>
<tr>
<td>4"</td>
<td>$ 200.51</td>
</tr>
</tbody>
</table>

Según los indicadores de medición y facturación de los últimos 20 años, se registró un incremento de 2 y 4% promedio anual respectivamente, pero las pérdidas de agua solo se habían reducido en 1%. Para el año 2009, cerca del 20% del total de agua en Tijuana se perdió en el sistema de transporte y distribución, porcentaje bajo si se compara con el promedio nacional de los organismos operadores del agua al ser de 25% en ese año, pérdidas que representaron 54.4 millones de pesos (Navarro, et al, 2016).

Para el 2016, los indicadores de gestión de la CESPT se presentan en el CUADRO 93, organismo operador del agua y saneamiento que atiende a la ciudad de Tijuana y Playas de Rosarito, potabilizando, transportando y distribuyendo el agua proveniente del ARCT y de la presa El Carrizo.

CUADRO 93 Indicadores de gestión Cespt 2016

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Oct</th>
<th>Nov</th>
<th>Dic</th>
<th>Variación últimos dos meses</th>
<th>Promedio en los últimos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Magnitud</td>
<td>%</td>
</tr>
<tr>
<td>Demográficos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Población total (hab)</td>
<td>1,853,559</td>
<td>1,853,835</td>
<td>1,855,649</td>
<td>1,814</td>
<td>0.10%</td>
</tr>
<tr>
<td>Cobertura del servicio de agua potable (%)</td>
<td>99.6</td>
<td>99.6</td>
<td>99.6</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Cobertura del servicio de alcantarillado (%)</td>
<td>89.4</td>
<td>89.4</td>
<td>89.4</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Población beneficiada agua potable (hab)</td>
<td>1,845,243</td>
<td>1,845,636</td>
<td>1,847,901</td>
<td>2,265</td>
<td>0.12%</td>
</tr>
<tr>
<td>Población beneficiada alcantarillado</td>
<td>1,656,952</td>
<td>1,657,048</td>
<td>1,658,938</td>
<td>1,890</td>
<td>0.11%</td>
</tr>
<tr>
<td>Padrón de usuarios</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total de cuentas de agua potable</td>
<td>626,162</td>
<td>627,327</td>
<td>628,046</td>
<td>719</td>
<td>0.10%</td>
</tr>
<tr>
<td>Total de cuentas alcantarillado (descargas)</td>
<td>563,292</td>
<td>564,270</td>
<td>564,889</td>
<td>619</td>
<td>0.10%</td>
</tr>
<tr>
<td>Cobertura de micromedición (%)</td>
<td>96.8</td>
<td>96.8</td>
<td>96.8</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Captación de agua (miles de m3)</td>
<td>10,656.9</td>
<td>10,152.8</td>
<td>9,927.5</td>
<td>-225</td>
<td>-2.2%</td>
</tr>
<tr>
<td>Consumo facturado de agua (miles de m3)</td>
<td>8,627.8</td>
<td>8,553.6</td>
<td>8,428.6</td>
<td>-125</td>
<td>-1.5%</td>
</tr>
<tr>
<td>Eficiencia física (%)</td>
<td>81.0</td>
<td>84.2</td>
<td>84.9</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Índice de volumen no contabilizado (%)</td>
<td>19.0</td>
<td>15.8</td>
<td>15.1</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Consumo promedio por cuenta (m3)</td>
<td>13.8</td>
<td>13.6</td>
<td>13.4</td>
<td>-0.2</td>
<td>-1.6%</td>
</tr>
<tr>
<td>Dotación per cápita (lt/s/hab/día)</td>
<td>185.5</td>
<td>182.6</td>
<td>172.6</td>
<td>-10</td>
<td>-5.5%</td>
</tr>
</tbody>
</table>

Los datos de cobertura de agua indican que existe un buen servicio para las comunidades urbanas, llegando a ser del 99.5 durante el 2016. Por su parte, el servicio de alcantarillado parece estar un poco rezagado debido a problemas técnico o a la falta de inversión en las comunidades no atendidas. La eficiencia física es otro indicador importante en estos servicios, pero destaca el volumen no contabilizado, que resulta de las fallas en el sistema de transporte y distribución debido a, entre otras cosas, a lo accidentado del relieve en la ciudad de Tijuana particularmente. Los volúmenes de dotación de agua per cápita son relativamente más bajos si se comparan con otras ciudades del interior del país.

CUADRO 93 (continuación). Indicadores de gestión Cespt 2016

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Oct</th>
<th>Nov</th>
<th>Dic</th>
<th>Variación últimos dos meses</th>
<th>Promedio en los últimos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saneamiento de Aguas Residuales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Captación y consumo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Captación de agua (miles de m3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumo facturado de agua (miles de m3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eficiencia física (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Índice de volumen no contabilizado (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumo promedio por cuenta (m3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dotación per cápita (lt/s/hab/día)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Como lo indica el CUADRO 93 (continuación) sobre el saneamiento de aguas residuales, existe una ligera reducción en la generación de aguas residuales al mes de diciembre de 2016, que quizá se deba a la reducción del volumen de agua potable consumido en las ciudades, tendencia que se observa también en el volumen per cápita para el mismo periodo. De igual forma, esa misma reducción se observa para el mismo mes en el indicador de agua residual reutilizada, la cual se asocia a una baja utilización de este recurso al promediar solo el 6.7% del agua tratada, especialmente para el riego de áreas verdes, tanto para Tijuana como en Playas de Rosarito.

El índice de agua residual tratada reusada debe ser una de las prioridades que se le debe de dar al recurso en el corto plazo, ya que este volumen que no es aprovechado en su totalidad, puede cubrir algunas necesidades de uso del agua que actualmente utiliza agua potable, el 6.7% que actualmente se aprovecha, puede aumentar si se diseñan estrategias para el reúso del agua tratada que requiere grandes volúmenes de agua, por ejemplo, para la recarga de acuíferos, procesos industriales, ciertos usos domésticos, etc. En un contexto de cambio climático, como se trató anteriormente, el agua tratada jugará un importante papel en el futuro cercano.

CUADRO 93 (continuación). Indicadores de gestión Cespt 2016
Cuentas por cobrar y cartera vencida (millones de pesos)

<table>
<thead>
<tr>
<th>Concepto</th>
<th>Oct</th>
<th>Nov</th>
<th>Dic</th>
<th>Variación últimos dos meses</th>
<th>Promedio en los últimos meses</th>
</tr>
</thead>
</table>

Volumen estimado de generación (miles de m³)	8,525.5	8,122.2	7,942.1	-180	-2.2	8,650	8,317
Captación de aguas residuales (miles de m³)	7,559.4	7,274.4	7,699.1	425	5.8	7,609	7,286
Tratamiento de aguas residuales (miles de m³)	7,460.9	7,197.9	7,632.6	435	6.0	7,523	7,196
Agua residual re-utilizada (miles de m³)	496.9	493.7	478.4	-15	-3.1	492	481
Índice de cobertura de saneamiento (%)	88.7	89.6	96.9	--	--	88.0	87.6
Índice de tratamiento de aguas residuales (%)	98.7	98.9	99.1	--	--	98.9	98.8
Índice de agua residual tratada reusada (%)	6.7	6.9	6.3	--	--	6.5	6.7
Generación promedio de agua residual por cuenta (m³)	12.1	11.6	12.3	--	--	12.0	11.7

Como se indica en el CUADRO 93 (continuación), son altos los valores de cuentas por cobrar en lo relativo al consumo de agua potable, debido a ineficiencias del organismo operador, la legislación vigente y a la morosidad de los usuarios, la mayor parte de ellos del sector residencial y comercial y servicios, al promediar los 1,479.9 millones de pesos durante el 2016, registrando un promedio mensual de 42.8 millones de pesos. De igual forma, la cartera vencida del organismo operador por consumo de agua potable indican un promedio anual al 2016 de 1,234.6 millones de pesos, llegando a los 1,972 en el total de cartera vencida, por lo que se debe atender este rezago para hacer más eficiente al organismo operador. Finalmente el número de empleados del organismo se mantiene estable, con un promedio de 1,677 empleados en el 2016 y un promedio de tomas por empleado de 371.

Tecate, B.C.

Los indicadores sobre el desempeño de la Comisión Estatal de Servicios Públicos de Tecate se presentan el CUADRO 94.
CUADRO 94 Indicadores de gestión Cespte acumulado 2014-2015
Agua potable

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Población</td>
<td>Integrado</td>
<td>Integrado</td>
<td>Urbano</td>
<td>Rural</td>
<td>Integrado</td>
<td>Urbano</td>
<td>Rural</td>
</tr>
<tr>
<td>Población total</td>
<td>109,618</td>
<td>111,228</td>
<td>88,881</td>
<td>22,347</td>
<td>111,228</td>
<td>88,881</td>
<td>22,347</td>
</tr>
<tr>
<td>Población servida</td>
<td>100,050</td>
<td>103,789</td>
<td>88,607</td>
<td>15,182</td>
<td>103,789</td>
<td>88,607</td>
<td>15,182</td>
</tr>
<tr>
<td>Cobertura (%)</td>
<td>91.3</td>
<td>93.3</td>
<td>99.7</td>
<td>67.9</td>
<td>93.3</td>
<td>99.7</td>
<td>67.9</td>
</tr>
<tr>
<td>Total</td>
<td>111,228</td>
<td>111,228</td>
<td>88,881</td>
<td>22,347</td>
<td>111,228</td>
<td>88,881</td>
<td>22,347</td>
</tr>
</tbody>
</table>

Agua potable

Total de conexiones	35,302	36,740	31,762	4,978	36,740	31,762	4,978
Doméstico	32,636	33,982	29,147	4,835	33,982	29,147	4,835
Comercial	2,155	2,229	2,151	78	2,229	2,151	78
Industrial	208	212	210	2	212	210	2
Gobierno	303	318	255	63	318	255	63
Captación de agua cruda total (m³)	1,224,742	1,386,964	1,204,774	182,190	673,627	582,816	90,811
Acueducto Río Colorado Tijuana	811,847	1,016,855	950,383	66,472	495,069	463,545	31,524
Pozos acuífero Tecate	412,895	370,109	254,391	115,718	178,559	119,271	59,287

Facturación (m³)

Facturación total	1,209,150	1,169,793	1,024,643	145,150	574,159	502,540	71,619
Doméstico	704,804	675,988	616,574	59,414	327,232	297,591	29,644
Comercial	86,345	80,281	76,533	3,748	38,902	37,334	1,568
Industrial	315,114	297,917	297,283	634	150,492	150,204	288
Gobierno	108,638	114,812	33,458	81,354	57,169	17,097	40,122
Medición total	1,160,101	1,100,805	958,939	14,866	533,129	463,156	69,973
Volumen medio doméstico	659,042	653,053	596,122	56,931	311,403	283,042	28,361
Volumen medio comercial	82,528	78,188	74,444	3,744	38,094	36,527	1,567
Volumen medio industrial	313,854	252,436	251,803	633	128,121	127,834	287
Volumen medio gobierno	104,677	117,128	36,570	80,558	55,511	15,753	39,758

Volumen facturado	1,209,150	1,169,793	1,024,643	145,150	574,159	502,540	71,619
Volumen captado de agua cruda	1,224,742	1,386,964	1,204,774	182,190	673,627	582,816	90,811
Pérdidas	-15,592	-212,171	-180,131	-37,040	-99,468	-80,276	-19,192
Eficiencia física	98.7	84.4	85.0	79.7	85.2	86.2	78.9

Fuente: Cespte, 2015.

Por lo que corresponde al organismo operador del agua en el municipio de Tecate, los indicadores de gestión indican que se tuvo una alta cobertura del servicio de agua potable en los centros urbanos al llegar al 99.7% y relativamente bajo en el medio rural del municipio al llegar al 67.9% de cobertura. Este indicador está fuertemente relacionado a que existen muchas localidades rurales en el municipio de Tecate, contrastando con el alto porcentaje de conexiones registradas al ser mayor en la ciudad con 31,762 en el medio urbano y 4,978 en el medio rural.

Un elemento a destacar es el aumento del volumen de agua proveniente del Arct entre febrero de 2014 y febrero de 2015, donde se observa un aumento de la demanda que contrasta con una reducción del agua proveniente del acuífero Tecate, cuyos valores fueron de 811,847 y 1,016,855 m³ del Arct en ese periodo, frente a
los 412,895 y 370,109 m3. De igual forma, destacan los valores de pérdidas de agua al ser de 180,131 m3 en el acumulado de febrero de 2015 en el medio urbano y de 37,040 m3 para el medio rural en el mismo periodo.

CUADRO 95 (continuación). Indicadores de gestión CESPTE acumulado 2014

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Población beneficiada</td>
<td>88,878</td>
<td>90,110</td>
<td>85,408</td>
<td>4,702</td>
<td>90,195</td>
<td>85,487</td>
<td>4,707</td>
</tr>
<tr>
<td>Total de conexiones</td>
<td>27,797</td>
<td>28,141</td>
<td>28,140</td>
<td>1</td>
<td>28,141</td>
<td>28,140</td>
<td>1</td>
</tr>
<tr>
<td>Doméstico</td>
<td>25,527</td>
<td>25,827</td>
<td>25,827</td>
<td>0</td>
<td>25,827</td>
<td>25,827</td>
<td>0</td>
</tr>
<tr>
<td>Comercial</td>
<td>1,894</td>
<td>1,930</td>
<td>1,930</td>
<td>0</td>
<td>1,930</td>
<td>1,930</td>
<td>0</td>
</tr>
<tr>
<td>Industrial</td>
<td>172</td>
<td>175</td>
<td>175</td>
<td>0</td>
<td>175</td>
<td>175</td>
<td>0</td>
</tr>
<tr>
<td>Gobierno</td>
<td>204</td>
<td>209</td>
<td>208</td>
<td>1</td>
<td>209</td>
<td>208</td>
<td>1</td>
</tr>
<tr>
<td>Cobertura (%)</td>
<td>81.1</td>
<td>81.1</td>
<td>96.2</td>
<td>21.1</td>
<td>81.1</td>
<td>96.1</td>
<td>21.1</td>
</tr>
<tr>
<td>Volumen de agua residual (m3)</td>
<td>806,163</td>
<td>751,332</td>
<td>693,842</td>
<td>57,490</td>
<td>357,231</td>
<td>327,382</td>
<td>29,849</td>
</tr>
<tr>
<td>Volumen de agua captada</td>
<td>806,163</td>
<td>751,332</td>
<td>693,842</td>
<td>57,490</td>
<td>357,231</td>
<td>327,382</td>
<td>29,849</td>
</tr>
<tr>
<td>Volumen de agua residual tratada</td>
<td>806,163</td>
<td>751,332</td>
<td>693,842</td>
<td>57,490</td>
<td>357,231</td>
<td>327,382</td>
<td>29,849</td>
</tr>
<tr>
<td>Volumen de agua residual tratada reusada</td>
<td>238,635</td>
<td>230,916</td>
<td>225,986</td>
<td>4,930</td>
<td>111,742</td>
<td>109,412</td>
<td>2,330</td>
</tr>
<tr>
<td>Volumen de agua residual no tratada</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Volumen de agua facturada</td>
<td>18,294</td>
<td>9,366</td>
<td>4,436</td>
<td>4,930</td>
<td>4,660</td>
<td>2,330</td>
<td>2,330</td>
</tr>
</tbody>
</table>

Empleados

<table>
<thead>
<tr>
<th>Total de empleados</th>
<th>192</th>
<th>190</th>
<th>179</th>
<th>13</th>
<th>190</th>
<th>173</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de empleados por cada 1,000 tomas</td>
<td>9</td>
<td>5.2</td>
<td>5.6</td>
<td>3</td>
<td>5.2</td>
<td>5.4</td>
<td>3</td>
</tr>
</tbody>
</table>

Facturación ($)

<table>
<thead>
<tr>
<th>Total de facturación</th>
<th>24,786,046</th>
<th>26,501,541</th>
<th>22,553,915</th>
<th>3,947,626</th>
<th>13,053,267</th>
<th>11,113,661</th>
<th>1,939,606</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eficiencia global</td>
<td>97.2</td>
<td>82.5</td>
<td>88.9</td>
<td>47.3</td>
<td>83.5</td>
<td>94.9</td>
<td>22.5</td>
</tr>
</tbody>
</table>

Fuente: Cespte, 2015.

El servicio de alcantarillado sanitario en el municipio de Tecate arroja que el total de agua generada 751,332 m3 en su totalidad es tratada, y un volumen de agua residual tratada reusada 230,916 m3 es reusada en alguna actividad, por lo que es un alto volumen de reúso al llegar al 30% si se compara con el 6.7% que se aplica por el organismo operador de Tijuana. Finalmente destacan los valores de eficiencia global en Tecate, al bajar de 97.2% al 82.5% entre febrero y diciembre de 2014, siendo muy baja en el medio rural al caer hasta un acumulado de 47.3% durante diciembre de 2014.

San Diego, CA

Por lo que respecta a los costos de operación del organismo operador del agua en el condado de San Diego, el CUADRO 96 presenta los principales indicadores.

CUADRO 96 Presupuesto y operación del sistema de agua potable de San Diego (dólares)

<table>
<thead>
<tr>
<th>Departamento</th>
<th>Año fiscal 2016</th>
<th>Año fiscal 2017</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administración</td>
<td>1,381,372</td>
<td>1,410,273</td>
<td>2,791,645</td>
</tr>
<tr>
<td>Sistema de operaciones</td>
<td>2,947,539</td>
<td>3,025,014</td>
<td>5,972,553</td>
</tr>
</tbody>
</table>

213
El Departamento de Operaciones y de Mantenimiento (O&M), dependiente del San Diego County Water Authority, se encarga de operar y mantener el sistema de distribución de agua, que consiste en aproximadamente 300 millas de tubería de gran diámetro conectados a dos acueductos, cuenta con 1,350 estructuras y 75 instalaciones de control de flujo, 1,400 hectáreas de derecho de vía de ocupación. También es responsable de la administración de centrales hidroeléctricas, estaciones de bombeo, instalaciones reguladoras de flujo, la estructura de derivación, presas, embalses y la planta potabilizadora de Twin Oaks Valley (OMD, 2016).

Los datos del CUADRO 95 indican que los costos por operar el sistema de agua en San Diego fue de 31,472,542 dólares para los ejercicios fiscales de 2016 y 2017, siendo el rubro de sistema de operaciones el área que mayor recurso invirtió al ser de 5,972,553 dólares para ese periodo. Puede observarse también la poca variación de inversión entre un año y el otro. En el 2010, los datos para los distritos de la región de San Diego muestran pérdidas entre 14.5 y 90.2 galones por servicio de conexión al día. Si bien, es mejor que el promedio nacional, estas pérdidas totales de 37.345 acres-pies al año (más de 12 mil millones galones) y el desperdicio de al menos de 55 millones Kw-hr, son suficientes para suministrar a más de 9,000 hogares de San Diego, esto basado en estimaciones de los requerimientos energéticos mínimos (Taylor, 2016).

2.15 MARCO INSTITUCIONAL PARA LA GOBERNACIÓN DEL AGUA

Ricardo V. Santes Álvarez

Contexto jurídico-administrativo

Ley de Aguas Nacionales (LAN)

El modelo de gestión del agua en México deriva del principio de propiedad originaria de la nación sobre los recursos naturales; en los términos del párrafo quinto del Art. 27 de la Constitución Política de los Estados Unidos Mexicanos; es decir, que las aguas nacionales son, indudablemente, propiedad de la nación (Gob. de México, 2014). La Ley de Aguas Nacionales (LAN), reglamentaria de ese precepto constitucional en la materia, tiene por objeto regular la explotación, uso o aprovechamiento de los recursos hídricos, su distribución y control, así como la preservación de su cantidad y calidad para lograr su desarrollo integral sustentable (Gob. de México, 2016).

En esa tesitura, en el concepto ‘aguas nacionales’ se comprende “prácticamente todo cuerpo de agua relevante en el país” (Pineda et al., 2014: 192). Si bien el dominio de la Nación sobre el recurso hídrico es inalienable e imprescriptible, su aprovechamiento por parte de particulares puede realizarse mediante concesión que otorgue el Ejecutivo Federal (Gob. de Baja California, 2008; Pineda et al., 2014).

Durante gran parte del Siglo XX, el modelo se sustentó en la condición del incremento de la oferta. Sin embargo, desde la década de los 1980’as, frente a la necesidad de satisfacer con mayores niveles de eficiencia los requerimientos hídricos del país, el modelo transitó paulatinamente a premisas de mejor control de la demanda. La institucionalidad fue reformada, fundándose la Comisión Nacional del Agua (CNA) en 1989 y promulgándose la mencionada LAN en 1992, cuyo reglamento se formaliza en 1994. De manera complementaria, se estableció una serie de medidas de control y administración, como fueron el régimen de concesión y cobro de derechos, la creación del Registro Público de Derechos de Aguas, y la descentralización de atribuciones hacia los municipios y distritos de riego.

Si bien las reformas descritas se presentaron como eficaces en su cometido, los años previos de negligencias y actitudes centralistas y patrimonialistas habían derivado en grandes y graves afectaciones a los recursos hídricos. Sobreexplotación de acuíferos, contaminación de aguas, baja calidad en los servicios de agua potable, y gran vulnerabilidad a las inundaciones de diversas regiones del país, han sido síntomas de esas inercias. Por ello, el discurso oficial apunta que en el nuevo siglo “se pretende que la política hídrica adopte como parámetro de referencia a la sustentabilidad” (Gob. de México, 2011: 10).
En efecto, la LAN introdujo la propuesta del desarrollo integral sustentable en torno al agua; asimismo, “la participación de los usuarios, el reconocimiento de un mercado de derechos de agua, la certeza ‘jurídica’ de los usuarios a partir de un título de concesión, hacer pública la disponibilidad del agua, contar con un Registro Público de Usuarios y la creación de los llamados Consejos de Cuenca” (Hernández, 2014: 29). Hacia 2004, reformas a la LAN contribuyeron al fortalecimiento de la CNA, pues ratificaron la autoridad y administración primordial del Ejecutivo Federal mexicano, pero promovieron ejercicios con gobiernos locales. La reformas estipulan que la administración y gestión de los recursos hídricos por cuenca o región hidrológica se realice mediante Consejos de Cuenca, donde participen los tres órdenes de gobierno, usuarios, particulares y organizaciones sociales (FAO, 2014).

Se argumenta que la LAN estimula la eficiencia y valoración del agua, toda vez que, introduce “mecanismos de mercado y precios, induciendo a los usuarios a operar en un marco de derechos y obligaciones”. En ese propósito, son instrumentos fundamentales los títulos de concesión y asignación; permisos de descargas de aguas residuales; e inscripción en el Registro Público de Derechos de Agua (Gob. de Baja California, 2008: 9). Adicionalmente, contempla instrumentos económicos y financieros para el crecimiento y la participación social.

En cuanto al interés de intervenir escenarios de futuro mediante la planeación y la programación, el Art. 15 de la LAN establece que “la planificación hídrica es de carácter obligatorio para la gestión integrada de los recursos hídricos, la conservación de recursos naturales, ecosistemas vitales y el medio ambiente”. En ese sentido, la formulación, implantación y evaluación de la planificación y programación hídrica comprenderá, además del Programa Nacional Hídrico y los Programas Hídricos para cada una de las cuencas o grupos de cuencas hidrológicas, los “subprogramas específicos, regionales, de cuencas hidrológicas, acuíferos, estatales y sectoriales que permitan atender problemas de escasez o contaminación del agua, ordenar el manejo de cuencas y acuíferos, o corregir la sobreexplotación de aguas superficiales y subterráneas”. La ley estipula que tales subprogramas (Gob. de México, 2016):

Comprenderán el uso de instrumentos para atender los conflictos por la explotación, uso, aprovechamiento y conservación del agua en cantidad y calidad, la problemática de concesión, asignación y transmisión de derechos de uso de agua en general para la explotación, uso, y aprovechamiento del agua, incluyendo su reúso, así como el control, preservación y restauración de la misma; la formulación y actualización del inventario de las aguas nacionales y de sus bienes públicos inherentes, así como el de los usos del agua, incluyendo el Registro Público de Derechos de Agua y de la infraestructura para su aprovechamiento y control.

Abundando, existen normas relacionadas con el sector, que tratan de evitar o reducir la contaminación del agua (FAO, 2014). Cabe comentar que en la frontera entre México y Estados Unidos, donde existen cuencas hidrográficas compartidas, la gobernación de los recursos hídricos adquiere matices importantes. Mientras que en México la administración del agua es responsabilidad principal del gobierno federal, en Estados Unidos, los gobiernos federales, estatales y locales están involucrados en dicha administración. Por ejemplo, en el caso de la CRT el estado de California ha sido claro en su propósito de llevar a cabo medidas de administración que controlen las fuentes de
contaminación no puntuales y mejoren el funcionamiento hidrológico de la cuenca. La posibilidad de una administración conjunta de las cuencas compartidas por parte de México y Estados Unidos, sin embargo, no parece tarea sencilla, pues confronta el principio centralista de uno y el federalista de otro.

Si bien en México se cuenta con la figura de organismos de cuenca, no hay aún esfuerzos formales para una administración bilateral efectiva de cuencas hidrográficas compartidas, como la CRT (IRSC, 2005). El Acta 320, firmada en octubre de 2015 por los representantes de las partes mexicana y estadounidense de la CILA abre la puerta para la cooperación bilateral y la participación de grupos interesados no gubernamentales, empero, conociendo el carácter conservador de esa instancia, limitada por cierto a la concepción ingenieril de los recursos hídricos compartidos, es poco probable que muestre apertura para apoyar una gobernación del agua de carácter integrador, esto es, que contemple las actividades sociales, económicas y políticas como factores de presión sobre los recursos hídricos.

Comisión Nacional del Agua (CONAGUA)

Antes de 1989, la política hidráulica en México se ejecutó a través de un conjunto de organismos y dependencias, regularmente poco coordinadas. Sin embargo, a partir de ese año se creó la CNA, como un órgano desconcentrado de la extinta Secretaría de Agricultura y Recursos Hidráulicos, como única autoridad facultada para administrar las aguas nacionales (FAO, 2014). Es un órgano administrativo desconcentrado de la Secretaría de Medio Ambiente y Recursos Naturales, que se regula por la LAN. Ejerce las atribuciones correspondientes a la autoridad en materia de agua, “constituyéndose como Órgano Superior con carácter técnico, normativo y consultivo de la Federación, en materia de gestión de los recursos hídricos, su administración, regulación, control y protección” (Gob. de Baja California, 2008: 49). Para tal fin, desplega sus funciones en niveles nacional y regional, por vía de un esquema de Regiones Hidrológico Administrativas (RHA). Sirve recordar que, en 1997, el país se dividió en 13 RHA, las cuales están formadas por agrupaciones de cuencas, consideradas las unidades básicas de gestión de los recursos hídricos, pero sus límites respetan los municipales, para facilitar la integración de la información socioeconómica. La CNA desempeña sus funciones a través de esas 13 RHA (FAO, 2014).

Asimismo, esa dependencia lidera el denominado el Sistema Nacional de Planeación de los Recursos Hídricos, en el que se establece el proceso de Planificación y Programación Hídrica, mismo que se apoya en “un enfoque de planeación estratégico, participativo y adaptativo”, que pretende organizar “estrategias y acciones de solución aplicables a nivel local, regional y nacional”; lo anterior, para asegurar la continuidad de los proyectos y las operaciones. El sistema de planeación de los recursos hídricos sugiere estudios integrados de la gestión de esos recursos, así como “una participación más activa y permanente de la sociedad en general, que permite la implementación de acciones que facilitan la solución de los problemas y ayuda a la toma de decisiones” (Gob. de México, 2012: 5). En los hechos, la CNA trabaja con diversas dependencias en el ámbito federal, estatal y municipal, así como con asociaciones de usuarios y empresas e instituciones del sector privado y social, y organizaciones
internacionales, aunque sirve recordar que, en el nivel local, son los municipios los responsables de dotar los servicios de agua potable, drenaje, alcantarillado, tratamiento y disposición de aguas residuales (FAO, 2014).

En la Península de Baja California, la dependencia federal ejerce actividades por vía de la Dirección General del Organismo de Cuenca de la Península de Baja California, estableciendo mecanismos de coordinación con la Comisión Estatal del Agua de Baja California (Gob. de Baja California, 2008). Abundando, se arguye que la CNA tiene otro cúmulo de tareas por atender; entre ellas, las siguientes (Gob. de México, 2011):

- Operar y mantener las redes de monitoreo de cantidad y calidad del agua;
- Promover y concertar con los usuarios planes de gestión del agua y reglamentos de uso y distribución en las cuencas y acuíferos del país;
- Instalar medidores volumétricos;
- Normar y regular las extracciones de las fuentes superficiales y subterráneas de agua a cargo de los cientos de miles de usuarios;
- Levantar inventarios de cauces y zonas federales, inundables y de recarga para administrar eficazmente estos bienes nacionales;
- Elaborar mapas de riesgo;
- Desarrollar y ejecutar programas de emergencia; y
- Vigilar el cumplimiento de la LAN.

Pese a su trascendental papel, la CNA ha sido motivo de fuertes cuestionamientos. Uno de los más frecuentes es su falta de presencia como autoridad responsable de cumplir y hacer cumplir la legislación y normatividad. Sin duda, ello se juzga como “una debilidad del Estado Mexicano”, que va a contracorriente de su compromiso de procurar la sustentabilidad del recurso hídrico (Gob. de México, 2011: 48). Adicionalmente, se percibe una merma sensible en las capacidades de la dependencia al ser debilitada por medidas de reducción de personal (Gob. de México, 2011).

Con todo, la opinión prevaleciente es que deben incrementarse las capacidades de la dependencia; sobre todo, para responder a situaciones como quejas y denuncias populares sobre problemas hídricos; vigilancia pertinente y visitas de inspección a instalaciones; así como calificación y, en su caso, imposición de sanciones a instalaciones infractoras y/o conductas reincidentes. En esa lógica, se sugiere también “robustecer la plantilla de personal”, capacitándola para las tareas pertinentes y, algo que debe subrayarse, generando cuadros aptos para reconocer las complejidades existentes en las distintas regiones (Gob. de México, 2011: 37, 48). Se dice que para la CNA, administrar y conservar las aguas nacionales significa evaluarlas en términos de cantidad y calidad, estimar su disponibilidad, otorgar concesiones, asignaciones y reservas (IRSC, 2005). El reto que tiene la
dependencia por delante es trascender visiones técnico-administrativas e incorporar en su agenda las demandas sociales y políticas en los diferentes contextos del territorio nacional.

Comisión Internacional de Límites y Aguas (CILA)

La CILA (o IBWC por sus siglas en Inglés) es un organismo con estatus internacional, con la tarea de atender tanto los asuntos de límites como de aguas compartidas por México y Estados Unidos. Consiste de dos secciones, una por país, que se hallan a cargo de un Comisionado, profesional en la ingeniería. Su carácter internacional implica que cada gobierno concede estatus diplomático al Comisionado designado por el otro gobierno (IBWC, 2017), lo que le da a la Comisión una capacidad de influencia importante; algo que no es nuevo por cierto, pues la CILA emanó de un cuerpo diplomático ad hoc, la Comisión Internacional de Límites, el cual fue acordado a fines del siglo XIX con el objetivo de definir límites nacionales entre México y Estados Unidos, los que permanecían inciertos por el cambiante curso de los ríos compartidos, el Colorado y el Bravo. “Evidentemente, la mayor preocupación era demarcar límites nacionales y, con ello, evitar más conflictos como el vivido apenas unas décadas atrás” (Santes-Álvarez, 2009: 131).

La CILA surge en 1944, como producto del Tratado sobre el uso de aguas de los Ríos Colorado, Tijuana y Bravo, signado con la finalidad, precisamente, de solucionar los problemas inherentes a esas tres importantes fuentes de aguas compartidas. Para ese fin, se argumenta, ambas secciones de la Comisión tienen el encargo de proporcionar servicios en un ánimo de cooperación binacional y compromiso de responsabilidad ante el público (Santes-Álvarez, 2009). En relación directa con la región Tijuana-San Diego, la Comisión ha elaborado a la fecha 4 actas particulares: (1) Acta 283, del 2 de julio de 1990, que acuerda un plan conceptual para la solución internacional de los problemas sanitarios fronterizos; (2) Acta 296, del 16 de abril de 1997, que conviene la distribución de costos para la construcción, operación, y mantenimiento de la planta internacional de tratamiento de aguas residuales, que había sido planteada en el Acta 283; (3) Acta 311, del 20 de febrero de 2004, donde se concierta elevar recomendaciones para el tratamiento secundario en México de las aguas residuales vertidas al área del Río Tijuana; (4) Acta 320, del 5 de octubre de 2015, que tiene el objetivo principal de estructurar la cooperación entre México y Estados Unidos para tratar los asuntos transfronterizos de la Cuenca del Río Tijuana.

Por ser de interés principal en este diagnóstico, se abunda en el Acta 320. En la misma, los Comisionados declaran haberse percatado del interés de instancias gubernamentales y no gubernamentales de México y Estados Unidos, por participar en iniciativas de cooperación sobre asuntos de la cuenca. Acuerdan por tanto, establecer un proceso incluyente de esos intereses, por vía del GBB. En ese ánimo de inclusión, la resolución de los Comisionados fue que el GBB esté integrado por representantes de la Comisión y de los gobiernos federales, estatales y locales (en todos los casos, no se especifica el número de representantes, pero mínimo han de ser dos por cada competencia nacional). Se suma un representante de las organizaciones no gubernamentales de cada país (es decir, solamente hay dos miembros no formales en el GBB). Los grupos de ambos lados de la frontera interesados en coadyuvar “a la
formulación de recomendaciones sobre asuntos fronterizos de la [Crt]” pueden hacerlo por vía de asesoramiento al GBB, mediante la figura de Grupos de Trabajo Binacionales (CILA, 2015a).

Estrategias e instrumentos de planeación y gestión

Programa Nacional Hídrico 2014-2018

El Programa Nacional Hídrico 2014-2018 (PNH 2014-2018) tiene como propósito proponer criterios y lineamientos que permitan dar unidad y congruencia a las tareas del Gobierno de la República en materia de aguas nacionales y de sus bienes públicos inherentes. Por ello, a la luz de los resultados del desempeño de las instancias responsables, principalmente la CNA, el PNH 2014-2018 esboza varias justificaciones. Subraya, por ejemplo, que los problemas del agua se originan, en buena medida, por la concurrencia de una variedad de fenómenos cuya solución bajo el marco jurídico e institucional actual queda escapa del alcance de la autoridad que administra las aguas nacionales (Gob. de México, 2014). Señala, asimismo, que la ausencia de coordinación interinstitucional satisfactoria ha desacreditado al sector ante la sociedad. Independientemente de ello, el hecho de la confesada falta de coordinación entre las autoridades responsables ha producido impactos ambientales que resultan en el deterioro y la contaminación de los recursos hídricos en el territorio nacional.

El PNH indica también que las limitaciones institucionales “vinculan a los tres Poderes de la Unión, a los tres órdenes de gobierno y a la sociedad organizada, impidiendo con ello el cumplimiento de los programas de gobierno establecidos” (Gob. de México, 2014: 28). No hay discusión al respecto, si bien es inevitable aclarar que, por fuerza de Ley, la CNA es la principal responsable del agua en México.

En el ánimo de una mejora a la gobernación del agua en el país, el PNH 2014-2018, propone que las dependencias involucradas “aporten su conocimiento y experiencia, dispongan de autoridad de tal manera que el agua se convierta en un verdadero promotor del desarrollo nacional, siempre bajo la coordinación de la autoridad del agua”. En esa línea plantea también que ocurran modificaciones al soporte legal, de tal suerte que se permita a las instancias públicas “ejecutar con mayor eficacia los actos de autoridad y a los ciudadanos obtener una mayor certeza jurídica de sus derechos y obligaciones”. En consecuencia, el PNH 2014-2018 avizora una reforma de fondo que lleve a la creación de una ley general de aguas, “que defina las bases para el acceso y uso equitativo y sustentable de los recursos hídricos, así como la participación de los tres órdenes de gobierno y la ciudadanía para tal efecto y diversas disposiciones relacionadas con aspectos de regulación de los servicios de agua para todos los usos” (Gob. de México, 2014: 58).

Programa Hídrico Regional. Visión 2030. Península de Baja California

El Programa Hídrico Regional Visión 2030. Región Hidrológico-Administrativa I Península de Baja California (PHR-v2030-PBC) tiene como aspiración de gran calado lograr la visión planteada en la Agenda del Agua 2030, es decir,
“Hacer realidad en un lapso de veinte años un país con ríos limpios, cuencas y acuíferos en equilibrio, cobertura universal de agua potable y alcantarillado, y asentamientos seguros frente a inundaciones catastróficas”. Para tal fin y para el caso de Baja california, el PHR-V2030-PBC establece una serie de objetivos y estrategias de mediano y largo plazos (Gob. de México, 2012).

Para los fines de este diagnóstico, el PHR-V2030-PBC tiene relevancia en tanto aborda la situación concreta de Baja California, y de manera particular aquellos aspectos inherentes a la CRT. Indica que, con la finalidad que cuencas y acuíferos de la Península de Baja California logren equilibrio en el año 2030, es necesario echar a andar varias medidas. Por caso, uno de sus objetivos es reducir el consumo, el desperdicio y de las pérdidas de agua en todos los usos en cuencas y acuíferos. En otro capítulo del diagnóstico se discuten estos aspectos; aquí únicamente se agrega que, a la luz de un enfoque de planeación de uso de los recursos hídricos con medidas de solución aplicables a nivel local y regional, a las propuestas de reducción deben adicionarse alternativas para un uso más racional, y una distribución más equitativa, del agua en la cuenca. Es similarmente notable que el PHR-V2030-PBC señala la necesidad de completar los planes de manejo de cuencas y acuíferos en la región, así como de aplicar la normatividad en uso, aprovechamiento, explotación de los recursos hídricos por la autoridad responsable (Gob. de México, 2012).

Plan Estatal de Desarrollo de Baja California 2014-2019

El Plan Estatal de Desarrollo de Baja California 2014-2019 (PEDBC 2014-2019) supone un instrumento integral, conformado por un conjunto de operaciones que se traducen en políticas públicas. Si bien atiende estrategias amplias (sociales, económicas, de seguridad y estado de derecho), no hay duda que uno de los aspectos más preciados es el de la infraestructura para la competitividad y el crecimiento. En este sentido, se asienta en el PEDBC 2014-2019 que, tradicionalmente, la infraestructura ha sido principal en la economía de la entidad, si bien reconoce que esa dinámica ha implicado costos sociales y ambientales considerables. Es por ello que el Plan subraya que “La situación que muestra la infraestructura de Baja California a partir de la segunda década del nuevo siglo es paradigmática y contrastante”, ello porque, concomitantemente a los procesos industriales, agropecuarios, turísticos, y de intercambio comercial y de personas entre México y Estados Unidos, acontece una serie de preocupaciones socioambientales, mismas que “reclaman inversiones centradas en la elevación de la calidad de vida y en la protección del entorno y de los recursos naturales con medidas de mitigación y restauración” (Gob. de Baja California, 2014: 101). Entre las cuestiones más apremiantes por atender, el PEDBC 2014-2019 hace hincapié en la gestión integral del territorio, la vivienda, y la gestión integral del agua.

Plan Estratégico Metropolitano 2034

El Plan Estratégico Metropolitano Tijuana-Tecate-Playas de Rosarito, y Ensenada, “con vigencia al año 2034” (PEM 2034) elaborado por el Consejo de Desarrollo Económico de Tijuana (CDT), presenta un objetivo abarcador, que puede sintetizarse a la puesta en marcha de esfuerzos para posicionar nacional e internacionalmente a la zona metropolitana, por vía de una mayor competitividad y un más alto nivel y calidad de vida de sus habitantes,
asegurando a la vez un pacto de gobernabilidad del territorio. En esa tesitura el PEM 2034 posee un mosaico de visiones de futuro; específicamente en el aspecto ambiental, declara el interés por llegar a “Ser una zona metropolitana que conserva su diversidad biológica y utiliza eficientemente los recursos naturales mediante la aplicación de políticas, planes, programas y acciones incluyentes”, entre otras cosas, para prevenir y controlar la contaminación, y lograr al gestión integral del agua (CDT, 2016: 74). Como se aprecia, el PEM 2034 comparte intereses con otros instrumentos aquí discutidos.

Ordenamiento Territorial

Baja California cuenta con un número de instrumentos de planeación que apuntalan su potencial industrial, turístico, agropecuario, comercial, y ecológico; asimismo coadyuvan al ordenamiento de las áreas urbanas, periurbanas, y rurales de la entidad. Conforme a la versión actualizada del PEDBC 2014-2019, el Programa Estatal de Ordenamiento Territorial de Baja California establece un modelo de ordenamiento territorial con dos polos de desarrollo (Tijuana-Rosarito-Tecate-Ensenada, y Mexicali y su Valle); nueve corredores regionales; dos zonas de influencia binacional; y un Sistema Urbano Rural. También, cuenta con el PEM 2034, descrito arriba, y el Programa Regional de Desarrollo Urbano, Turístico y Ecológico del Corredor Costero Tijuana-Rosarito-Ensenada, entre otros importantes instrumentos de planeación (Gob. de Baja California, 2015). Por supuesto en el orden municipal también existen instrumentos de utilidad como son, precisamente, los planes municipales de desarrollo, que al momento ya se tienen para las administraciones 2017-2019.

En los foros de consulta a expertos para elaborar el Programa de Manejo Integral del Agua de la Cuenca del Río Tijuana, celebrados en marzo de este año, se señaló la necesidad de desarrollar alternativas para mitigar y prevenir problemas debidos a usos inadecuados de los suelos de la CRT. La urgencia es compatibilizar los usos de suelo en la cuenca para el mejor aprovechamiento de sus recursos naturales, así como lograr incrementar la calidad de vida de los habitantes. De cara a la existencia de los instrumentos de planeación y gestión enunciados, el reto es alinear la propuesta del PMIA-CRT al contexto jurídico-administrativo que rige a dichos instrumentos.

Participación de instancias no gubernamentales

En el escenario mundial, las sociedades democráticas defienden principios de amplio aliento, como el derecho a la información, la apertura gubernamental y la participación social en los asuntos de interés general. Se reconoce que estos principios son esenciales para mejores esquemas de gobernación; entre otras razones, porque legitiman las decisiones de gobierno. No obstante, es frecuente enterarnos de la falta de voluntad de las autoridades formales para incorporar a los actores no gubernamentales en las mesas de discusión y los procesos de toma de decisiones; sobre todo, en las democracias incipientes. La participación social o del gran público, se aprecia como un derecho de
las personas en las democracias, pero también debe entenderse como una “Responsabilidad de individuos o grupos organizados de la sociedad interesados por incidir en los asuntos públicos” (Santes-Álvarez, 2009: 219).

En la CRT, organizaciones de la sociedad civil, miembros de la academia y otros interesados se han pronunciado desde hace varios años por adquirir un papel más relevante en las decisiones sobre los problemas que ahí ocurren. Esta demanda ha sido reiterada en las reuniones de representaciones gubernamentales a nivel nacional lo mismo que en los foros internacionales. Baste recordar que desde la época de la firma del Acuerdo de La Paz, y sobre todo a raíz de la firma del Tratado de Libre Comercio de América del Norte, en 1994, los problemas socio-ambientales en torno a la cuenca han sido motivo de discusión. Los programas binacionales Frontera XXI, Frontera 2012, y el vigente Frontera 2020, auspiciados formalmente por la Environmental Protection Agency, en Estados Unidos, y la Secretaría del Medio Ambiente y Recursos Naturales, en México, dan cuenta de la reiterada demanda social porque las autoridades de ambos lados se abran a la participación no gubernamental.

La inquietud no estuvo ausente en los foros de consulta de marzo de 2017. Ahí, se señaló la importancia de integrar al GBB una mesa de trabajo adicional para tratar los temas relacionados con la CRT. Al respecto, es pertinente recordar que, en noviembre de 2015, en la primera reunión del GBB, se formaron grupos de trabajo binacionales, integrados por representantes gubernamentales (federales, estatales y locales) y organizaciones no gubernamentales de ambos países. La tarea explícita fue determinar actividades o iniciativas para contribuir el mejoramiento de la cuenca; principalmente, en cuanto a manejo y disposición de residuos sólidos, control de sedimentos, y calidad del agua (CILA, 2015b).

La demanda surgida en los foros parece revelar un interés porque la autoridad del agua en cuencas transfronterizas brinde mayores oportunidades de participación a los actores no gubernamentales en la toma de decisiones. Se reitera que los esfuerzos por lograr ese objetivo no son nuevos; por caso, el proyecto Visión Binacional para la Cuenca del Río Tijuana (IRSC, 2005), derivó en el Grupo de Trabajo de Frontera 2012 para la CRT, una distinción que ha permitido a las organizaciones existentes contar con fondos para solventar costos de reuniones, ampliar la red de participantes potenciales, facilitar la cooperación entre iniciativas sociales y gubernamentales, e incrementar la legitimidad y credibilidad de las propuestas ciudadanas (Sabet, 2008). No obstante, es evidente que en asuntos transfronterizos donde los recursos hídricos conforman el eje articulador, la CILA es la autoridad al mando.

Unidad de administración integral: la cuenca hidrográfica

Las cuencas se definen como unidades territoriales delimitadas por un parteaguas, a partir del cual las aguas derivan y se concentran, “pudiendo desembocar en el mar, en un cuerpo de agua interior o infiltrarse antes de encontrar algún cuerpo o superficie colector” (Cotler, et al., 2007). Se consideran como las demarcaciones más propicias para “la gestión de los recursos hídricos y su relación con las diversas actividades sociales y económicas que realizan los
diferentes grupos humanos” en su interior (Hernández, 2014: 31). Por tanto, el enfoque de cuenca ayuda a comprender los diversos fenómenos que ocurren en esas circunscripciones del país.

Soporte jurídico-administrativo

El esquema de cuenca para la administración y gestión de los recursos hídricos fue reconocido en la LAN desde sus orígenes. Entonces, se argumentó que la cuenca hidrológica conjuntamente con los acuíferos, constituye la unidad de gestión de los recursos hídricos, directiva que fue consolidada en la reforma de 2004, donde quedó asentado que la política hídrica nacional ha de sustentarse en la gestión integrada del agua por vía de la cuenca hidrológica. Se reitera aquí que la Ley indica enfáticamente que el control de explotaciones, usos o aprovechamientos son competencia federal (Pineda et al., 2014).

Instancias gubernamentales, como el Instituto Nacional de Ecología y Cambio Climático apoya la administración pública de los recursos hídricos con base en el enfoque de cuenca. Ya en 2007, el instituto afirmaba que, en nuestro país se hacían esfuerzos para elaborar divisiones hidrográficas, aunque aclaraba que pocas se apegaban a criterios naturales únicamente, “principalmente topográficos e hidrográficos”. Dejaba en claro que, “la delimitación de cuencas hidrográficas constituye un insumo esencial para llevar a cabo la planeación y la gestión de los recursos naturales bajo el enfoque de cuencas” (Cotler, et al., 2007).

En los hechos, sin embargo, algunos aclaran que ha sido poco frecuente que se recurra a un enfoque de cuencas hidrográficas como una unidad de gestión. Agregan que es aun menos habitual que se propongan esquemas que favorezcan “la integración de las diversas medidas de ordenamiento, conservación y aprovechamiento de los recursos. Muy ocasionalmente, instrumentos gubernamentales tales como los programas de ordenamiento ecológico y las áreas naturales protegidas han utilizado el enfoque de cuenca” (Cotler, 2010: 161). Con todo, el enfoque de cuenca hidrográfica ha sido orientador de la política pública en materia hídrica en diversos países; sobre todo, a partir de la década de los setenta del siglo pasado. Así lo testimonian diversas conferencias internacionales realizadas desde entonces, donde la discusión gira en torno a esta perspectiva (Hernández, 2014). La apuesta ha ido consolidándose en torno a la gestión integral de los recursos hídricos.

Gestión Integral de los Recursos Hídricos

En México, la Gestión Integral de los Recursos Hídricos (GIRH) busca que el Estado, en coordinación con los usuarios del agua y las organizaciones de la sociedad a nivel de cuenca hidrológica, implementen las políticas necesarias para el control, aprovechamiento, distribución y preservación del recurso hídrico tanto en calidad como en cantidad, considerando las estrategias necesarias para atenuar los impactos y propiciar el desarrollo sustentable de la cuenca (Hernández, 2014).

En efecto, en su fracción I, el Artículo 7 de la LAN refiere a la gestión integrada de las aguas nacionales, e indica que ese esquema es prioritario, al grado de considerarle asunto de seguridad nacional. En esa línea, estipula (Artículo 15)
que la planificación hídrica es obligatoria, pues ello coadyuva no sólo la gestión integrada de los recursos hídricos, sino a la conservación de los demás recursos naturales, en suma, a la protección y mantenimiento de los ecosistemas. La planificación, a la luz de la gestión integral de los recursos hídricos es, por tanto, un instrumento esencial de la política pública ambiental (Gob. de México, 2014).

Vale recordar que, a principios de la década, la Agenda del Agua 2030 señalaba la importancia vital de la sustentabilidad hídrica. En la Iniciativa 25, llamaba a “Fortalecer el proceso de formulación, seguimiento y evaluación de los programas hídricos de largo plazo por región hidrológica orientados a la sustentabilidad hídrica”. La propuesta era reorientar el uso y aprovechamiento de las aguas en la ruta del desarrollo sustentable en cada región, cuenca y acuífero del país, “mediante programas propios que también se propoigan objetivos de largo plazo congruentes con los propósitos nacionales” (Gob. de México, 2011: 55). La Agenda precisa la necesidad de atender las diferencias existentes en las cuencas, en aspectos como clima, recursos naturales, población, economía, cultura y demás particularidades. Apunta también que cualquier tipo de acción debe ser consensuada con los usuarios, gobiernos locales y otros sectores de la sociedad, e indefectiblemente ser armonizada con los programas sectoriales; máxime, con los que atiendan directamente el manejo de las cuencas; el ordenamiento urbano y el ordenamiento ecológico (Gob. de México, 2011).

El PHR-V2030-PBC indica que cada entidad debe adecuar su marco jurídico y armonizarlos a los objetivos de la gestión integral del agua. En términos de la administración pública, esa medida coadyuvaría a la descentralización, es decir, a la mayor participación de los gobiernos locales en la gestión del recurso. No sólo eso, el PHR-V2030-PBC también planteaba la importancia de promover un Reglamento de la Ley de Aguas Nacionales por cada cuenca y acuífero de la región (Gob. de México, 2012).

Es evidente que el PHR-V2030-PBC mostró propuestas de avanzada; al tiempo y bajo las condiciones existentes, es factible juzgarle como un legado de buenas intenciones nada más. Sin embargo, las ideas quedaron plasmadas y es necesario reflexionar en ellas. Para sustentar esta argumentación sirve destacar que el PEM 2034 señala que, en lo referente a riesgos ambientales urbanos y de vulnerabilidad en la zona metropolitana, uno de los principales problemas es que el enfoque de cuencas hidrológicas, “está ausente en los tres niveles de gobierno y no [se] cuenta con mapas de identificación de amenazas y zonas vulnerables a inundación para diferentes periodos de retorno” (CDT, 2015: 44). Con todo, la propuesta de gestión de recursos hídricos por cuenca hidrográfica y bajo el modelo GIRH es vigente y conviene explorar la posibilidad de seguir avanzando por ese camino.
PARTE 3.
Programa para el Manejo Integral del Agua en la Cuenca del Río Tijuana

3.1 PROBLEMAS PRIORITARIOS

a. Insuficiencia en la cantidad, calidad y aprovechamiento del agua
b. Deterioro de los recursos y áreas naturales
c. Incompatibilidad del uso del suelo con el medio natural y fallas en la aplicación de la ley
d. Insuficiente articulación entre actividades económicas y ambientales
e. Insuficiencia de acceso a agua y saneamiento en comunidades rurales periurbanas marginadas
f. Insuficiente educación ambiental, reducida conciencia, participación social y cultura ambiental
g. Legislación y marco institucional insuficiente
h. Eventos hidrometeorológicos y cambio climático
i. Insuficiente monitoreo de calidad y cantidad de aguas superficiales y subterráneas e ineficiente comunicación de información socioambiental

3.2 PROGRAMAS VIGENTES ASOCIADOS CON LOS PROBLEMAS PRIORITARIOS

Programas Federales
Programas Estatales
Programas Municipales

3.3 ACCIONES INSTRUMENTADAS Y EN PROCESO

Ámbito Federal
Ámbito Estatal
Ámbito Municipal

3.4 CONVENIOS, ACUERDOS Y ESTRUCTURAS INTERGUBERNAMENTALES Y SOCIALES DE COORDINACIÓN TRANSVERSEL

3.5 ESTRATEGIAS PARA LA SOLUCIÓN DE LOS PROBLEMAS PRIORITARIOS

3.6 ACCIONES REQUERIDAS

3.7 INVERSIONES REQUERIDAS
3.8 POSIBLES FUENTES DE FINANCIAMIENTO

3.9 PRIORIZACIÓN DE ACCIONES Y PROYECTOS

3.10 INDICADORES DE SUSTENTABILIDAD AMBIENTAL
Bibliografía

APCD, 2015, Air Pollution Control District, en http://www.sdapcd.org/, consultado el 24 de noviembre de 2016.

CEA, 2008, Programa Estatal Hídrico 2008-2013, Gobierno del Estado de Baja California, Comisión Estatal del Agua, Mexicali, B.C.

CEABC, 2016, Informe mensual 2016, Indicadores de gestión, Comisión Estatal del Agua, Baja California, México.

CONAGUA, 2014, Inventario Nacional de Plantas Municipales de Potabilización y de Tratamiento de Aguas Residuales en Operación, Diciembre de 2014, Comisión Nacional del Agua, México, en:

Eaton-Gonzalez, R., y Mellink, E., 2015, One Shared Region and Two Different Change Patterns: Land Use Change in the Binational Californian Mediterranean Region, Land, 4 (4), 1138-1154.

Gob. de Baja California, 2008, Programa Estatal Hídrico 2008-2013, Mexicali, Gob. de Baja California.
Gob. de Baja California, 2014, Plan Estatal de Desarrollo 2014-2019, Mexicali, Gob. de Baja California.

Hernández, Jazmín [tesis de maestría], 2014, “Modelación de gestión de los recursos hídricos en la Cuenca del Río Tijuana, mediante el WEAP (Water Evaluation and Planning System)”. México, Programa de Maestría y Doctorado en Ingeniería, Ingeniería de sistemas, Gestión integral del agua-UNAM.

IMPLAN, 2010, Actualización del Programa de Desarrollo Urbano del Centro de Población de Tijuana, B.C., Instituto Municipal de Planeación, Tijuana, B.C.

IMPLAN, 2010, Programa de Desarrollo Urbano del Centro de Población Tijuana 2008-2030, Instituto Municipal de Planeación, Tijuana, Baja California, México.

INEGI, 2015, Censo de Población y Vivienda 2010, Instituto Nacional de Estadística, Geografía e Informática, México.

INEGI, 1995, Estudio Hidrológico del Estado de Baja California, Instituto National de Estadística, Geografía e Informática, México, D.F.

Instituto Nacional de Estadística y Geografía, 2015, Censo de Población y Vivienda, México.

OCDE, 2013, Hacer posible la Reforma de la Gestión del Agua en México. Diagnóstico y Propuestas, Organización para la Cooperación y el Desarrollo Económicos, México.

Ochoa, Y. y Ojeda Revah, L., 2017, Conservación de vegetación para reducir riesgos hidrometeorológicos en una metrópoli Mexicana, Estudios Fronterizos, Universidad Autónoma de Baja California (18) 35, 47-69..doi.org/10.21670/ref.2017.35.a03

PESPA, 2015, Programa Estatal de Protección al Ambiente de Baja California, Secretaría de Protección al Ambiente, Gobierno del Estado de Baja California, Mexicali, B.C.

POE, 1995, Versión abreviada del Programa de Ordenamiento Ecológico del Estado de Baja California, Periódico Oficial del Estado de Baja California, 8 de septiembre de 1995, sección 3, Mexicali, B.C.

POE, 2004, Plan Estatal de Desarrollo Urbano de Baja California, Periódico Oficial del Estado de Baja California, t. CXI, 43, 8 de octubre de 2004, Mexicali, B.C.

POE, 2005, Programa de Ordenamiento Ecológico del Estado de Baja California, Periódico Oficial del Estado de Baja California, t. CXII, 46, 21 de octubre de 2005, Mexicali, B.C.

Vega, Briones Germán, 2016, Población commuter de la frontera norte: el caso de Mexicali-Calexico y Tijuana-San Diego, en *Estudios Demográficos y Urbanos*, vol. 31, núm. 1 (91), 2016, pp. 207-238.
